The pathogenic role of Helicobacter pylori virulence factors has been studied with a mouse model of gastric disease. BALB/c mice were treated orally with different amounts of sonic extracts of cytotoxic H. pylori strains (NCTC 11637, 60190, 84-183, and 87A300 [CagA+/Tox+]). The pathological effects on histological sections of gastric mucosae were assessed and were compared with the effects of treatments with extracts from noncytotoxic strains (G21 and G50 [CagA-/Tox-]) and from strains that express either CagA alone (D931 [CagA+/Tox-]) or the cytotoxin alone (G104 [CagA-/Tox+]). The treatment with extracts from cytotoxic strains induced various epithelial lesions (vacuolation, erosions, and ulcerations), recruitment of inflammatory cells in the lamina propria, and a marked reduction of the mucin layer. Extracts of noncytotoxic strains induced mucin depletion but no other significant pathology. Crude extracts of strain D931, expressing CagA alone, caused only mild infiltration of inflammatory cells, whereas extracts of strain G104, expressing cytotoxin alone, induced extensive epithelial damage but little inflammatory reaction. Loss of the mucin layer was not associated with a cytotoxic phenotype, since this loss was observed in mice treated with crude extracts of all strains. The pathogenic roles of CagA, cytotoxin, and urease were further assessed by using extracts of mutant strains of H. pylori defective in the expression of each of these virulence factors. The results obtained suggest that (i) urease activity does not play a significant role in inducing the observed gastric damage, (ii) cytotoxin has an important role in the induction of gastric epithelial cell lesions but not in eliciting inflammation, and (iii) other components present in strains which carry the cagA gene, but distinct from CagA itself, are involved in eliciting the inflammatory response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC173584 | PMC |
http://dx.doi.org/10.1128/iai.63.10.4154-4160.1995 | DOI Listing |
Appl Environ Microbiol
January 2025
Department of Biology, Indiana University, Bloomington, Indiana, USA.
The bacterial pathogen causes disease in coral species worldwide. The mechanisms of coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS).
View Article and Find Full Text PDFFuture Microbiol
January 2025
Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA.
Aim: Chronic wound infections present a prevalent medical issue and a multifaceted problem that significantly impacts healthcare systems worldwide. Biofilms formed by pathogenic bacteria are fundamental virulence factors implicated in the complexity and persistence of bacterial-associated wound infections, leading to prolonged recovery times and increased risk of infection. This study aims to investigate the antibacterial effectiveness of commonly employed bioactive wound healing compositions with a particular emphasis on their effectiveness against common bacterial pathogens encountered in chronic wounds - , , and to identify optimal wound product composition for managing chronic wound infections.
View Article and Find Full Text PDFJ Inflamm (Lond)
January 2025
Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
Clostridioides difficile, a spore-forming anaerobic bacterium, is the primary cause of hospital antibiotic-associated diarrhea. Key virulence factors, toxins A (TcdA) and B (TcdB), significantly contribute to C. difficile infection (CDI).
View Article and Find Full Text PDFBMC Microbiol
January 2025
The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
The emergence and prevalence of hypervirulent Klebsiella pneumoniae (hvKP) have proposed a great challenge to control this infection. Therefore, exploring some new drugs or strategies for treating hvKP infection is an urgent issue for scientific researchers. In the present study, the clpV gene deletion strain of hvKP (ΔclpV-hvKP) was constructed using CRISPR-Cas9 technology, and the biological characteristics of ΔclpV-hvKP were investigated to explore the new targets for controlling this pathogen.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
Bacterial transcription activator-like effectors (TALEs) promote pathogenicity by activating host susceptibility (S) genes. To understand the pathogenicity and host adaptation of Xanthomonas citri pv. malvacearum (Xcm), we assemble the genome and the TALE repertoire of three recent Xcm Texas isolates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!