Finite element modeling has played an increasingly important role in the study of defibrillation. In order to model well the complex anatomical details, a large number of elements are required in the finite element grid, leading to a large set of equations that often cannot be solved effectively with the computational power of conventional computers. In this paper, we describe the use of a data parallel computer to provide the memory and reduction in solution time for solving these large finite element problems. Using a uniform grid and a nodal assembly technique, the discretized problem domain can be mapped efficiently to the parallel computer, allowing the solution of problems with over two million unknowns. The finite element algorithm for a three-dimensional inhomogeneous anisotropic body is described together with its parallel implementation. Test results for a canine torso model constructed from CT images are also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0010-4825(95)00018-y | DOI Listing |
Am J Orthod Dentofacial Orthop
January 2025
Department of Orthodontics, Faculty of Dentistry, Hacettepe University, Ankara, Turkey. Electronic address:
Introduction: The objective of this study was to evaluate the effects of the miniplate application sites in the maxilla and the applied force vector changes during skeletally supported facemask application in adolescent patients with unilateral cleft lip and palate (UCLP) using finite element model (FEM) analysis.
Methods: A FEM was obtained from a cone-beam computed tomography image of a 12-year-old female patient with UCLP. Miniplates were placed on 3 different sites of the maxilla; 500 g of advancement force was applied bilaterally, parallel (0°), and downward (-30°) to the occlusal plane.
J Clin Med
December 2024
Department of Orthopaedic Surgery, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8575, Ibaraki, Japan.
Proximal femoral fractures are particularly common in older adults, and cases requiring conversion to total hip arthroplasty may arise because of treatment failure or osteoarthritis. Fractures around the distal screw removal holes can be problematic. This study aimed to analyze the relationship between stem length and femoral stress distribution to determine the optimal stem length.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Mechanical Engineering, Politecnico di Milano, Via G. La Masa 1, 20156 Milano, Italy.
In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Key Laboratory of Testing Technology for Manufacturing Process MOE, Southwest University of Science and Technology, Mianyang 621010, China.
The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Acropolis Restoration Service, Hellenic Ministry of Culture, 10555 Athens, Greece.
This study focuses on the geotechnical evaluation of the foundation conditions of the Agrippa Monument at the Acropolis of Athens, aiming to propose interventions to improve stability and reduce associated risks. The assessment reveals highly uneven foundation conditions beneath the monument. A thorough collection of bibliographic references and geotechnical surveys was conducted, classifying geomaterials into engineering-geological units and evaluating critical parameters for geotechnical design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!