Three-dimensional uniform grid modeling of electrical defibrillation on a data parallel computer.

Comput Biol Med

Department of Electrical & Computer Engineering, New Mexico State University, Las Cruces 88003, USA.

Published: May 1995

Finite element modeling has played an increasingly important role in the study of defibrillation. In order to model well the complex anatomical details, a large number of elements are required in the finite element grid, leading to a large set of equations that often cannot be solved effectively with the computational power of conventional computers. In this paper, we describe the use of a data parallel computer to provide the memory and reduction in solution time for solving these large finite element problems. Using a uniform grid and a nodal assembly technique, the discretized problem domain can be mapped efficiently to the parallel computer, allowing the solution of problems with over two million unknowns. The finite element algorithm for a three-dimensional inhomogeneous anisotropic body is described together with its parallel implementation. Test results for a canine torso model constructed from CT images are also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0010-4825(95)00018-yDOI Listing

Publication Analysis

Top Keywords

finite element
16
parallel computer
12
uniform grid
8
data parallel
8
three-dimensional uniform
4
grid modeling
4
modeling electrical
4
electrical defibrillation
4
defibrillation data
4
parallel
4

Similar Publications

Finite model analysis of different anchorage sites for bone-supported facemask application in unilateral cleft lip and palate.

Am J Orthod Dentofacial Orthop

January 2025

Department of Orthodontics, Faculty of Dentistry, Hacettepe University, Ankara, Turkey. Electronic address:

Introduction: The objective of this study was to evaluate the effects of the miniplate application sites in the maxilla and the applied force vector changes during skeletally supported facemask application in adolescent patients with unilateral cleft lip and palate (UCLP) using finite element model (FEM) analysis.

Methods: A FEM was obtained from a cone-beam computed tomography image of a 12-year-old female patient with UCLP. Miniplates were placed on 3 different sites of the maxilla; 500 g of advancement force was applied bilaterally, parallel (0°), and downward (-30°) to the occlusal plane.

View Article and Find Full Text PDF

Proximal femoral fractures are particularly common in older adults, and cases requiring conversion to total hip arthroplasty may arise because of treatment failure or osteoarthritis. Fractures around the distal screw removal holes can be problematic. This study aimed to analyze the relationship between stem length and femoral stress distribution to determine the optimal stem length.

View Article and Find Full Text PDF

In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.

View Article and Find Full Text PDF

The directivity of the quasi-static component (QSC) is quantitatively investigated for evaluating the orientation of a micro-crack buried in a thin solid plate using the numerical simulation method. Based on the bilinear stress-strain constitutive model, a three-dimensional (3D) finite element model (FEM) is built for investigating the nonlinear interaction between primary Lamb waves and the micro-crack. When the primary Lamb waves at A0 mode impinge on the micro-crack, under the modulation of the contact acoustic nonlinearity (CAN), the micro-crack itself will induce QSC.

View Article and Find Full Text PDF

This study focuses on the geotechnical evaluation of the foundation conditions of the Agrippa Monument at the Acropolis of Athens, aiming to propose interventions to improve stability and reduce associated risks. The assessment reveals highly uneven foundation conditions beneath the monument. A thorough collection of bibliographic references and geotechnical surveys was conducted, classifying geomaterials into engineering-geological units and evaluating critical parameters for geotechnical design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!