An acylamino phospholipid analogue (2-(R)-N-palmitoylnorleucinol-1-phosphoglycol or (R)-PNPG) was examined for its inhibitory effects against type II phospholipase A2 (PLA2) acting on membranes from Escherichia coli. Using two enzyme sources (rat platelet membranes or recombinant human type II PLA2), (R)-PNPG inhibited phospholipid hydrolysis to a maximal value of 80-85%, half-maximal effect being attained at a substrate/inhibitor molar ratio of 80-250. In contrast, (S)-PNPG was 12-fold less potent and thus provided a control for possible non-specific effects of these polar lipids. However, both analogues exerted only marginal effects on the liberation of [3H]arachidonic acid from rat platelets challenged with calcium ionophore A23187. Since, among various animal species, rat platelets contain by far the highest amounts of this enzyme, our data rule out any possible involvement of secretory PLA2 in arachidonic acid liberation from platelet phospholipids, cytosolic PLA2 appearing in this case as the best candidate able to regulate eicosanoid biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0929-7855(95)00002-8 | DOI Listing |
Cell Mol Biol Lett
January 2025
Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069, Bialystok, Poland.
The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, 45019, Zapopan, Jal, Mexico.
Lipases from the basidiomycete fungus Ustilago maydis are promising but underexplored biocatalysts due to their high homology with Candida antarctica lipases. This study provides a comprehensive characterization of a recombinant CALB-like lipase from U. maydis, expressed in Pichia pastoris (rUMLB), and compares its properties with those of the well-studied recombinant lipase B from C.
View Article and Find Full Text PDFJ Diabetes Complications
January 2025
Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China. Electronic address:
Background: Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an enzyme implicated in inflammation and oxidative stress, and has been associated with cardiovascular conditions and adverse outcomes, particularly in diabetes and its complications. However, no prior studies have examined the relationship between Lp-PLA2 and diabetic peripheral neuropathy (DPN) in patients with type 2 diabetes mellitus (T2DM). This research aims to explore the potential association between Lp-PLA2 and DPN.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of General Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
Background: The objective of the current study was to elucidate the clinical mechanism through which phospholipase D2 (PLD2) exerted a regulatory effect on neutrophil migration, thereby alleviating the progression of acute pancreatitis.
Aim: To elucidate the clinical mechanism through which PLD2 exerted a regulatory effect on neutrophil migration, thereby alleviating the progression of acute pancreatitis.
Methods: The study involved 90 patients diagnosed with acute pancreatitis, admitted to our hospital between March 2020 and November 2022.
Ren Fail
December 2025
Department of Nephrology, Xiamen Key Laboratory of Precision Diagnosis and Treatment of Chronic Kidney Disease, The Fifth Hospital of Xiamen, Xiamen, Fujian, China.
Adult nephrotic syndrome is primarily caused by membranous nephropathy (MN), with idiopathic membranous nephropathy (IMN) being a prominent subtype. The onset of phospholipase A2 receptor (PLA2R1)-associated IMN is critically linked to M-type PLA2R1 exposure, yet the mechanism underlying glomerular injury remains unclear. In this study, membranous nephropathy datasets (GSE115857, GSE200828) were retrieved from GEO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!