Positive cooperativity, defined as an enhancement of the ligand affinity at one site as a consequence of binding the same type of ligand at another site, is a free energy coupling between binding sites. It can be present both in systems with sites having identical ligand affinities and in systems where the binding sites have different affinities. When the sites have widely different affinities such that they are filled with ligand in a sequential manner, it is often difficult to quantify or even detect the positive cooperativity, if it occurs. This study presents verification and quantitative measurements of the free energy coupling between the two calcium binding sites in a mutant form of calbindin D9k. Wild-type calbindin D9k binds two calcium ions with similar affinities and positive cooperativity--the free energy coupling, delta delta G, is around -8 kJ.mol-1 (Linse S, et al., 1991, Biochemistry 30: 154-162). The mutant, with the substitution Asn 56-->Ala, binds calcium in a sequential manner. In the present work we have taken advantage of the variations among different metal ions in terms of their preferences for the two binding sites in calbindin D9k. Combined studies of the binding of Ca2+, Cd2+, and La3+ have allowed us to conclude that in this mutant delta delta G < -6.4 kJ.mol-1, and that Cd2+ and La3+ also bind to this protein with positive cooperativity. The results justify the use of the (Ca2+)1 state of the Asn 56-->Ala mutant, as well as the (Cd2+)1 state of the wild type, as models for the half-saturated states along the two pathways of cooperative Ca2+ binding in calbindin D9k.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2143146PMC
http://dx.doi.org/10.1002/pro.5560040602DOI Listing

Publication Analysis

Top Keywords

binding sites
16
calbindin d9k
16
positive cooperativity
12
free energy
12
energy coupling
12
quantitative measurements
8
binding
8
calcium binding
8
sites affinities
8
sequential manner
8

Similar Publications

This study aimed to identify shared gene expression related to circadian rhythm disruption in polycystic ovary syndrome (PCOS) and non-alcoholic fatty liver disease (NAFLD) to discover common diagnostic biomarkers. Visceral fat RNA samples were collected from 12 PCOS and 14 non-PCOS patients, a sample size representing the clinical situation and sufficient to capture PCOS gene expression profiles. Along with liver transcriptome profiles from NAFLD patients, these data were analyzed to identify crosstalk circadian rhythm-related genes (CRRGs) between the diseases.

View Article and Find Full Text PDF

Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm.

View Article and Find Full Text PDF

One-step adsorptive purification of ethylene (C2H4) from ternary mixture comprising of acetylene (C2H2), ethylene (C2H4) and carbon dioxide (CO2) is a great challenge in the chemical industry. Herein, a microporous metal-organic framework (FJI-H38) has been reported, which possesses a high density of electronegative O/N binding sites and appropriate pore size. Notably, at 0.

View Article and Find Full Text PDF

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Anti-correlation of LacI association and dissociation rates observed in living cells.

Nat Commun

January 2025

Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.

The rate at which transcription factors (TFs) bind their cognate sites has long been assumed to be limited by diffusion, and thus independent of binding site sequence. Here, we systematically test this assumption using cell-to-cell variability in gene expression as a window into the in vivo association and dissociation kinetics of the model transcription factor LacI. Using a stochastic model of the relationship between gene expression variability and binding kinetics, we performed single-cell gene expression measurements to infer association and dissociation rates for a set of 35 different LacI binding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!