EM-tomography of section collapse, a non-linear phenomenon.

Microsc Res Tech

Department of Electron Microscopy, University of Amsterdam, The Netherlands.

Published: July 1995

Using back projection for reconstruction and tilt series of Epon or Lowicryl embedded and sectioned material, we demonstrated: (1) a reduction in thickness of 50% for Epon and 80% for Lowicryl sections, and (2) a non-uniform density distribution along the electron-optical axis in sections. The highest density was found at the vacuum exposed side of the section. The formvar side of the section showed a similar increase in density, but not to the same extent. Minimalization of electron exposure, even without pre-exposure, did not affect the reconstructed thickness, nor did it affect the non-uniform density distribution. However, parallax measurements showed that at 150K, collapse of Epon sections does not take place. For EM-tomography of plastic embedded material our findings imply that at the top and bottom portion of the sections the dimensions of the reconstructed structures are distorted, but that in the middle portion the dimensions are reliably retained.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.1070310409DOI Listing

Publication Analysis

Top Keywords

non-uniform density
8
density distribution
8
em-tomography collapse
4
collapse non-linear
4
non-linear phenomenon
4
phenomenon projection
4
projection reconstruction
4
reconstruction tilt
4
tilt series
4
series epon
4

Similar Publications

Effects of Pre-Deformation in Corrosion Fatigue Crack Growth of Al-Mg-Zn Alloy.

Materials (Basel)

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China.

This study investigated the effect of pre-deformation on the corrosion fatigue crack propagation (CFCG) of Al-Mg-Zn alloy in a corrosive environment. Tensile tests at different pre-deformation levels and molecular dynamics simulations analyzed changes in dislocation density. Corrosion fatigue experiments were conducted in a 3.

View Article and Find Full Text PDF

Interfacial modulation with homogeneous gallium phosphide protective layer enables dendrite-free and superior stable sodium metal anode.

J Colloid Interface Sci

April 2025

College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China; Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China. Electronic address:

Sodium metal is heralded as a premier anode candidate poised to supplant lithium in next-generation rechargeable batteries due to its abundant availability, cost-effectiveness, and superior energy density. Due to the highly reactive nature of metallic sodium, an unstable solid electrolyte interphase (SEI) forms spontaneously on the Na metal anode. This instability leads to non-uniform sodium deposition during cycling, promoting dendrite growth and the accumulation of "dead" sodium.

View Article and Find Full Text PDF

Absolute calibration methodology for non-uniform uranium and matrix distributions in large barrels of uranium-bearing solid waste.

Sci Rep

December 2024

Nuclear Safeguards and Physical Protection Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.

The effective implementation of domestic and international safeguards necessitates verification techniques for Nuclear Materials (NM). Even in the case of very small quantities of NMs, accounting for and analyzing such traces can provide insights into the mass balance of NMs and/or state activities, ensuring consistency in state declarations. This paper proposes and benchmarks an absolute calibration methodology for estimating the uranium-mass content in large-volume barrels (200 L).

View Article and Find Full Text PDF

Small spheroids for head and neck cartilage tissue engineering.

Sci Rep

December 2024

Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.

The demand for cartilage reconstruction in the head and neck region arises frequently due to trauma, malignancies, and hereditary diseases. Traditional tissue engineering produces cartilage from a small biopsy by combining biomaterials and expanded cells. However, this top-down approach is associated with several limitations, including the non-uniform distribution of cells, lack of physiological cell-cell and cell-matrix interactions, and compromised mechanical properties and tissue architecture.

View Article and Find Full Text PDF

Homonuclear decoupled INADEQUATE NMR methods with improved sensitivity and resolution in solid-state NMR.

J Magn Reson

January 2025

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:

The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!