We isolated ENOD5, ENOD12 and ENOD40 homologues from Vicia sativa and studied their expression pattern during Rhizobium-induced nodule formation. Comparison of the VsENOD40 nucleotide sequence with the pea, soybean and alfalfa ENOD40 sequences showed that the sequences contain two conserved regions, called region I and region II. Comparison of all the potential open reading frames (ORFs) showed that all the five different ENOD40 clones encode a highly conserved small polypeptide of 12 or 13 amino acids encoded by an ORF located in region I. Furthermore we studied with in situ hybridization the expression pattern of VsENOD5, VsENOD12 and VsENOD40 during Rhizobium-induced nodule formation. Although the expression of these genes is largely similar to that of the pea counterparts, differences where found for the expression of VsENOD12 and VsENOD40 in Vicia. VsENOD12 is expressed in the whole prefixation zone II, whereas in pea ENOD12 is only expressed in the distal part of this zone. VsENOD40 is expressed in the uninfected cells of interzone II-III, while in pea ENOD40 is expressed in both the uninfected and infected cells of this zone.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00032671DOI Listing

Publication Analysis

Top Keywords

vsenod12 vsenod40
12
rhizobium-induced nodule
12
nodule formation
12
vsenod5 vsenod12
8
vicia sativa
8
expression pattern
8
expressed uninfected
8
vsenod40
5
expression
5
vsenod40 expression
4

Similar Publications

We isolated ENOD5, ENOD12 and ENOD40 homologues from Vicia sativa and studied their expression pattern during Rhizobium-induced nodule formation. Comparison of the VsENOD40 nucleotide sequence with the pea, soybean and alfalfa ENOD40 sequences showed that the sequences contain two conserved regions, called region I and region II. Comparison of all the potential open reading frames (ORFs) showed that all the five different ENOD40 clones encode a highly conserved small polypeptide of 12 or 13 amino acids encoded by an ORF located in region I.

View Article and Find Full Text PDF

Rhizobium leguminosarum bv. viciae-secreted Nod factors are able to induce root hair deformation, the formation of nodule primordia and the expression of early nodulin genes in Vicia sativa (vetch). To obtain more insight into the mode of action of Nod factors the expression of early nodulin genes was followed during Nod factor-induced root hair deformation and nodule primordium formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!