Okadaic acid, a potent and specific inhibitor of protein phosphatases 1 (IC50 10-20 nM) and 2A (IC50 0.05-2 nM) caused early and sustained inhibitions of microsomal cholesterol ester hydrolase activity in hepatocyte suspensions. The changes in the kinetic properties of the esterase and its response to exogenous alkaline phosphatase and cyclic AMP-dependent protein kinase after cell exposure to 1 microM or 1 nM okadaic acid differed markedly among themselves, which suggests the involvement of both protein phosphatases 1 and 2A in the regulation of the microsomal hydrolysis of cholesterol esters. Furthermore, the inhibitory effect of okadaic acid is likely to be independent of the dibutyryl-cyclic AMP promoted cell events leading to stimulation of esterase activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0005-2760(95)00103-jDOI Listing

Publication Analysis

Top Keywords

okadaic acid
16
microsomal cholesterol
8
cholesterol ester
8
ester hydrolase
8
protein phosphatases
8
inhibition microsomal
4
okadaic
4
hydrolase okadaic
4
acid
4
acid isolated
4

Similar Publications

Diarrhetic shellfish toxins (DSTs) are widespread in marine environments, posing potential threats to marine ecosystems, shellfish aquaculture, and human health. Despite their prevalence, knowledge of the stability of dissolved DSTs in seawater is still limited. This study aimed to investigate the effects of bacteria, temperature, and irradiation on the stability of dissolved okadaic acid (OA) and dinophysistoxin-1 (DTX1) in seawater.

View Article and Find Full Text PDF

The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.

View Article and Find Full Text PDF

, a dinoflagellate responsible for producing diarrhetic shellfish poisoning (DSP) toxins, poses significant threats to marine ecosystems, aquaculture industries, and human health. DSP toxins, including okadaic acid (OA), dinophysis toxin (DTX), and their diverse derivatives, continue to be identified and characterized. In this study, we report the isolation of four new diol esters of OA/DTX-1 from large-scale cultures of .

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells derived cytokines associated with AKT/IAPs signaling ameliorate Alzheimer's disease development.

Stem Cell Res Ther

January 2025

NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.

Background: Alzheimer's disease (AD) is a progressive neurodegenerative condition affecting around 50 million people worldwide. Bone marrow-derived mesenchymal stem cells (BMMSCs) have emerged as a promising source for cellular therapy due to their ability to differentiate into multiple cell types and their paracrine effects. However, the direct injection of BMMSCs can lead to potential unpredictable impairments, prompting a renewed interest in their paracrine effects for AD treatment.

View Article and Find Full Text PDF

Exploring potentially synthetic genes related to diarrhetic shellfish toxins production in Prorocentrum sp. via comparative transcriptomics.

Ecotoxicol Environ Saf

January 2025

College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China. Electronic address:

Harmful algal blooms (HABs), exacerbated by climate change and environmental disturbances, pose global challenges due to marine toxin contamination, particularly diarrhetic shellfish toxins (DSTs). DSTs are prevalent marine toxins, and understanding their synthesis is vital for managing fisheries and mitigating environmental triggers. This study delves into the synthesis mechanisms of DSTs in Prorocentrum arenarium and Prorocentrum lima, which vary in toxin types and concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!