Direct effects of ethanol on the interaction of cytosolic lipid transfer proteins with ligands are not known. In this study, recombinant liver fatty acid binding protein (L-FABP) and sterol carrier protein-2 (SCP-2) were used in conjunction with a series of fluorescent fatty acid probe molecules to compare the relative dielectric properties of the ligand binding sites and to examine the effects of ethanol in vitro on ligand interaction with these proteins. L-FABP and SCP-2 exhibited broad but distinct ligand specificities. Although NBD-stearic acid bound with high affinity to both proteins, emission spectra showed that the relative dielectric constant of the ligand binding site in SCP-2 was significantly lower than in L-FABP, 2 vs 24. Furthermore, affinities of L-FABP for NBD-fatty acid probes were NBD-stearic acid > NBD-lauric acid >>> NBD-hexanoic acid, NBD-acetic acid. In contrast, SCP-2 bound only NBD-stearic acid with a Kd of 0.23 microM and Bmax of 0.98 mol/mol. This observation of SCP-2 specifically binding the fluorescent NBD-stearic acid was confirmed with RdB-stearic acid and the naturally fluorescent cis-parinaric acid, both of which had similar affinities and stoichiometries. Ethanol in vitro had no effect on L-FABP-NBD-stearic acid binding. However, ethanol at physiological concentrations (25 mM) dramatically inhibited NBD-stearic acid binding to SCP-2. In conclusion, the data show that both L-FABP and SCP-2 specifically bind fluorescent fatty acids. However, the ligand binding sites of L-FABP and SCP-2 differed dramatically in their dielectric properties and their sensitivity to ethanol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi00037a033 | DOI Listing |
J Biol Chem
July 2004
Department of Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
Whereas the role of liver fatty acid-binding protein (L-FABP) in the uptake, transport, mitochondrial oxidation, and esterification of normal straight-chain fatty acids has been studied extensively, almost nothing is known regarding the function of L-FABP in peroxisomal oxidation and metabolism of branched-chain fatty acids. Therefore, phytanic acid (most common dietary branched-chain fatty acid) was chosen to address these issues in cultured primary hepatocytes isolated from livers of L-FABP gene-ablated (-/-) and wild type (+/+) mice. These studies provided three new insights: First, L-FABP gene ablation reduced maximal, but not initial, uptake of phytanic acid 3.
View Article and Find Full Text PDFBiochem J
September 2004
Department of Pathobiology, Texas A&M University, TVMC, College Station, TX 77843-4467, USA.
Despite the importance of cholesterol in the formation and function of caveolar microdomains in plasma membranes, almost nothing is known regarding the structural properties, cholesterol dynamics or intracellular factors affecting caveolar cholesterol dynamics. A non-detergent method was employed to isolate caveolae/raft domains from purified plasma membranes of murine fibroblasts. A series of fluorescent lipid probe molecules or a fluorescent cholesterol analogue, dehydroergosterol, were then incorporated into the caveolae/raft domains to show that: (i) fluorescence polarization of the multiple probe molecules [diphenylhexatriene analogues, DiI18 (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate), parinaric acids and NBD-stearic acid [12-(N-methyl)-N-[(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-octadecanoic acid] indicated that acyl chains in caveolae/raft domains were significantly less 'fluid' (i.
View Article and Find Full Text PDFJ Biol Chem
July 2001
Department of Physiology and Pharmacology, Texas A & M University, College Station, TX 77843-4466, USA.
Despite the critical role lipid droplets play in maintaining energy reserves and lipid stores for the cell, little is known about the regulation of the lipid or protein components within the lipid droplet. Although immunofluorescence of intact cells as well as Western analysis of isolated lipid droplets revealed that sterol carrier protein-2 (SCP-2) was not associated with lipid droplets, SCP-2 expression significantly altered the structure of the lipid droplet. First, the targeting of fatty acid and cholesterol to the lipid droplets was significantly decreased.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2000
Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201-1180, USA.
Adipose differentiation related protein (ADRP) is a 53 kDa protein encoded by a cDNA originally cloned by differential hybridization from murine adipocytes. ADRP is induced during the early onset of the adipose differentiation program and is expressed at high level in mature adipocytes. We have demonstrated that ADRP stimulated the uptake of fatty acids thereby providing evidence for a functional role of ADRP in lipid metabolism.
View Article and Find Full Text PDFBiochim Biophys Acta
January 1999
Geriatric Research, Education and Clinical Center, VA Medical Center and Department of Pharmacology, University of Minnesota School of Medicine, 11G, One Veterans Drive, Minneapolis, MN 55417, USA.
Sterol carrier protein-2 (SCP-2) is an intracellular lipid carrier protein that binds cholesterol, phospholipids, fatty acids and other ligands. It has been reported that expression of SCP-2 was increased in brain nerve endings or synaptosomes of chronic ethanol-treated mice and it was shown that cholesterol homeostasis was altered in brain membranes of chronic ethanol-treated animals. Ethanol may interfere with the capacity of SCP-2 to bind cholesterol as well as other lipids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!