A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A hybrid neural and statistical classifier system for histopathologic grading of prostatic lesions. | LitMetric

Neural network and statistical classification methods were applied to derive an objective grading for moderately and poorly differentiated lesions of the prostate, based on characteristics of the nuclear placement patterns. A partly trained multilayer neural network was used as a feature extractor. A hybrid classifier system using a quadratic Bayesian classifier applied to these features allowed grade assignment consensus with visual diagnosis in 96% of fields from a training set of 500 fields and in 77% of 130 fields of a test set.

Download full-text PDF

Source

Publication Analysis

Top Keywords

classifier system
8
neural network
8
hybrid neural
4
neural statistical
4
statistical classifier
4
system histopathologic
4
histopathologic grading
4
grading prostatic
4
prostatic lesions
4
lesions neural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!