AI Article Synopsis

  • CD80 and CD86 are molecules found on antigen-presenting cells that interact with T cell receptors CD28 and CTLA-4, which are key for T cell activation.
  • Both CD80 and CD86 share similar structures and functions, but have some differences in receptor binding, specifically involving important amino acids in their IgV and IgC domains.
  • Site-directed mutagenesis revealed that certain amino acids are crucial for binding to these T cell receptors, indicating that binding sites partially overlap for both CD80 and CD86.

Article Abstract

The B7-related molecules CD80 and CD86 are expressed on antigen-presenting cells, bind the homologous T cell receptors CD28 and CTLA-4, and trigger costimulatory signals important for optimal T cell activation. All four molecules are immunoglobulin superfamily members, each comprising an extracellular Ig variable-like (IgV) domain, with CD80 and CD86 containing an additional Ig constant-like (IgC) domain. Despite limited sequence identity, CD80 and CD86 share similar overall receptor binding properties and effector functions. We have identified, by site-directed mutagenesis of soluble forms of CD80 and CD86, residues in both the IgV and IgC domains that are important for CTLA4Ig and CD28Ig binding. Mutagenesis in the IgV domain of CD80 identified 11 amino acids that support receptor binding. Many of these residues are conserved in the B7 family, are hydrophobic, and approximately map to the GFCC'C" beta-sheet face of an IgV fold. Mutagenesis of corresponding residues in CD86 established that some, but not all, of these residues also played a role in CD86 receptor binding. In general, mutations had a similar effect on CTLA4Ig and CD28Ig binding, thereby indicating that both receptors bind to overlapping sites on CD80 and CD86. Further, mutagenesis of several conserved residues in the ABED beta-sheet face of the IgC domain of CD80 completely ablated receptor binding. Point mutagenesis had a more pronounced effect than complete truncation of the IgC domain. Thus, full CTLA4Ig and CD28Ig binding to B7 molecules is dependent upon residues in the GFC'C" face of the IgV domain and the ABED face of the IgC domain.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.270.36.21181DOI Listing

Publication Analysis

Top Keywords

cd80 cd86
20
igc domain
16
receptor binding
16
igv domain
12
domain cd80
12
ctla4ig cd28ig
12
cd28ig binding
12
cd80
8
binding
8
beta-sheet face
8

Similar Publications

Objective: To evaluate the effects of Fu Tu Sheng Jin Rehabilitation Formula (FTSJRF) on airway inflammation, mucus secretion, and immunoreaction in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein-induced mouse model.

Methods: Forty-two mice were randomly divided into seven groups: normal, D1, D3, D10, D10H, D10M and D10L, according to the days of modeling and different dosages of FTSJRF. D1, D3, D10, D10H, D10M and D10L group mice were intratracheally administered with 15 µg SARS-CoV-2 spike protein; mice in the D10H, D10M, and D10L groups were intragastrically administered FTSJRF (46, 23 and 11.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are key regulators of adaptive immunity, guiding T helper (Th) cell differentiation through antigen presentation, co-stimulation, and cytokine production. However, in steady-state conditions, certain DC subsets, such as Langerhans cells (LCs), induce T follicular helper (Tfh) cells and B cell responses without inflammatory stimuli. Using multiple mouse models and systems, we investigated the mechanisms underlying steady-state LC-induced adaptive immune responses.

View Article and Find Full Text PDF

: Immunotherapy is gaining great relevance in both non-muscle-invasive bladder cancer (NMIBC), with the use of bacille Calmette-Guerin (BCG), and in muscle-invasive BC (MIBC) with anti-checkpoint therapies blocking PD-1/PD-L1, CTLA-4/CD80-CD86, and, more recently, NKG2A/HLA-E interactions. Biomarkers are necessary to optimize the use of these therapies. : We evaluated killer-cell immunoglobulin-like receptors (KIRs) and HLA-I genotyping and the expression of NK cell receptors in circulating T and NK lymphocytes at diagnosis in 325 consecutive BC patients (151 treated with BCG and 174 treated with other therapies), as well as in 648 patients with other cancers and 973 healthy donors as controls.

View Article and Find Full Text PDF

The cytotoxic T-lymphocyte antigen-4 (CTLA4) is essential in controlling T cell activity within the immune system. Thus, uncovering the molecular dynamics of single nucleotide polymorphisms (SNPs) within the CTLA4 gene is critical. We identified the non-synonymous SNPs (nsSNPs), examined their impact on protein stability, and identified the protein sequences associated with them in the human CTLA4 gene.

View Article and Find Full Text PDF

Molecular Mechanism of VSV-Vectored ASFV Vaccine Activating Immune Response in DCs.

Vet Sci

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730030, China.

The vesicular stomatitis virus (VSV)-vectored African swine fever virus (ASFV) vaccine can induce efficient immune response, but the potential mechanism remains unsolved. In order to investigate the efficacy of recombinant viruses (VSV-p35, VSV-p72)-mediated dendritic cells (DCs) maturation and the mechanism of inducing T-cell immune response, the functional effects of recombinant viruses on DC activation and target antigens presentation were explored in this study. The results showed that surface-marked molecules (CD80, CD86, CD40, and MHC-II) and secreted cytokines (IL-4, TNF-α, IFN-γ) were highly expressed in the recombinant virus-infected DCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!