The critical role of thrombin in the pathogenesis of venous and arterial thrombosis, and the effectiveness of glycosaminoglycans as antithrombotic drugs are well known. Antithrombin III is a major inhibitor of thrombin and augmentation of its inhibitory actions by heparin is the basis for the clinical uses of heparin. Recent clinical and experimental studies have demonstrated that another glycosaminoglycan, dermatan sulfate, is an effective antithrombotic drug. Dermatan sulfate catalyses the inhibition of thrombin by heparin cofactor II. The concentrations of heparin cofactor II are higher in the plasmas of individuals with congenital antithrombin III deficiency and pregnant women than controls. The role of heparin cofactor II as a physiologic thrombin inhibitor is unknown. Enzyme-linked immunosorbent assays were used to quantify thrombin-heparin cofactor II and thrombin-antithrombin III endogenous to the plasmas of adult antithrombin III-Hamilton deficient subjects, their siblings with normal antithrombin III levels, pregnant women at term and 3 to 5 days after delivery. Both thrombin-antithrombin III and thrombin-heparin cofactor II complexed with vitronectin were detected in all the plasmas. Significantly, the concentrations of thrombin-heparin cofactor II-vitronectin were higher in the plasmas of congenital antithrombin III deficient subjects and in pre- and post-delivery plasmas than those of normal subjects. In addition, the concentrations of thrombin-heparin cofactor II decreased 3 to 5 days after delivery, reflecting the disappearance of the catalytically active dermatan sulfate elaborated by the placenta. Thus, heparin cofactor II normally inactivates thrombin in vivo, with its role increasing in conditions associated with high levels of heparin cofactor II and/or dermatan sulfate.
Download full-text PDF |
Source |
---|
J Clin Med
December 2024
Department of Surgery, Nazarbayev University School of Medicine, Astana 010000, Kazakhstan.
Heparin resistance (HR) in patients on extracorporeal membrane oxygenation (ECMO) exacerbates bleeding and thrombogenesis. Thus far, there is no universal definition of what this condition entails and no unified strategy for assessing heparin's efficacy in ECMO patients. The most frequent discrepancy when it comes to defining HR is the difference in the reported doses: units per day (U/d) or per kilogram per hour (U/kg/h).
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Cardiology, Taizhou Hospital of Zhejiang Province, affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China.
Aims: This study was to explore the relationship between plasma exosomes and Acute myocardial infarction (AMI).
Background: Acute myocardial infarction (AMI) is one of the most common cardiovascular complications. Recent studies have shown that exosomes play a crucial role in the development and progression of cardiovascular diseases.
ACS Cent Sci
November 2024
Department of Chemistry, University of Colorado, Boulder, Boulder, Colorado 80309, United States.
Biologicals
February 2025
Blood Products Division, Biopharmaceuticals & Herbal Medicine Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, South Korea. Electronic address:
This study aimed to establish a second national standard for antithrombin (AT) concentrate that can be used for potency assays of AT products. A collaborative study was conducted involving four laboratories, including national control laboratories and manufacturers in Korea, and the suitability of a candidate material to serve as the second national standard for AT concentrate was evaluated. The candidate material was manufactured using a process approved for Good Manufacturing Practices.
View Article and Find Full Text PDFJ Struct Biol X
December 2024
Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.
Fibroblast growth factor 2 (FGF2) is a signaling protein that plays a significant role in tissue development and repair. FGF2 binds to fibroblast growth factor receptors (FGFRs) alongside its co-factor heparin, which protects FGF2 from degradation. The binding between FGF2 and FGFRs induces intracellular signaling pathways such as RAS-MAPK, PI3K-AKT, and STAT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!