CFTR and differentiation markers expression in non-CF and delta F 508 homozygous CF nasal epithelium.

J Clin Invest

Institut National de la Santé et de la Recherche Médicale U. 314, Hôpital Maison Blanche, Reims, France.

Published: September 1995

Human nasal polyps from non-CF and delta F 508 homozygous CF patients were used to compare the expression of CFTR and markers epithelial differentiation, such as cytokeratins (CK) and desmoplakins (DP), at the transcriptional and translational levels. mRNA expression was assessed by semiquantitative RT/PCR kinetic assays while the expression and distribution of proteins were evaluated by immunofluorescence analysis. In parallel, for each nasal tissue specimen, the importance of surface epithelium remodeling and inflammation was estimated after histological observations. Our results show that the steady-state levels of CFTR, CK13, CK18, CK18, CK14, or DP 1 mRNA transcripts in delta F 508 CF nasal polyps were not significantly different from those of non-CF tissues. A variability in the CFTR mRNA transcript level and in the pattern of CFTR immunolabeling has been observed between the different tissue samples. However, no relationship was found between the level of CFTR mRNA transcripts and the CFTR protein expression and distribution, either in the non-CF or in the CF group. The histological observations of non-CF and CF nasal polyp tissue indicated that the huge variations in the expression and distribution of the CFTR protein were associated with the variations in the degree of surface epithelium remodeling and inflammation in the lamina propria. A surface epithelium, showing a slight basal cell hyperplasia phenotype associated with diffuse inflammation, was mainly characterized by a CFTR protein distribution at the apex of ciliated cells in both non-CF and CF specimens. In contrast, in a remodeled surface epithelium associated with severe inflammation, CFTR protein presented either a diffuse distribution in the cytoplasm of ciliated cells, or was absent. These results suggest that abnormal expression and distribution of the CFTR protein of CF airways is not only caused by CFTR mutations. Airway surface epithelium remodeling and inflammation could play a critical role in the posttranscriptional and/or the posttranslational regulation of the CFTR protein expression in non-CF and CF airways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC185786PMC
http://dx.doi.org/10.1172/JCI118199DOI Listing

Publication Analysis

Top Keywords

cftr protein
24
surface epithelium
20
expression distribution
16
cftr
13
delta 508
12
epithelium remodeling
12
remodeling inflammation
12
expression
8
expression non-cf
8
non-cf delta
8

Similar Publications

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.

View Article and Find Full Text PDF

Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis.

Int J Mol Sci

January 2025

Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Türkiye.

Granulomatous mastitis (GM) is a rare, benign, but chronic and recurrent inflammatory breast disease that significantly impacts physical and psychological well-being. It often presents symptoms such as pain, swelling, and discharge, leading to diagnostic confusion with malignancy. The etiology of GM remains unclear, though autoimmune and multifactorial components are suspected.

View Article and Find Full Text PDF

Novel Cystic Fibrosis Ferret Model Enables Visualization of CFTR Expression Cells and Genetic CFTR Reactivation.

Hum Gene Ther

January 2025

Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA.

Cystic fibrosis (CF) is caused by mutations in the (). While gene therapy holds promise as a cure, the cell-type-specific heterogeneity of expression in the lung presents significant challenges. Current CF ferret models closely replicate the human disease phenotype but have limitations in studying functional complementation through cell-type-specific CFTR restoration.

View Article and Find Full Text PDF

Introduction of Ivacaftor/Lumacaftor in Children With Cystic Fibrosis Homozygous for F508del in the Netherlands: A Nationwide Real-Life Study.

Pediatr Pulmonol

January 2025

Beatrix Children's Hospital Department of Pediatric Pulmonology and Pediatric Allergy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Introduction: Lumacaftor/ivacaftor (lum/iva) was introduced in the Netherlands in 2017. We investigated 1-year efficacy of lum/iva on lung function and small airway and structural lung disease evaluated by multiple breath nitrogen washout and CT scan. Additionally, we investigated effects of lum/iva on exacerbations, anthropometry, sweat chloride and safety in children with CF in the Netherlands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!