Europium chelates provide a non-radioactive alternative for sensitive labelling of antibodies for diagnostic immunoassays. Lysine residues at antibody surfaces are ready targets for labelling by an isothiocyanate derivative of the europium chelate (Eu3+). Here the labelling efficiency of a recombinant anti-human alpha-fetoprotein (hAFP) Fab fragment has been improved by increasing its lysine content by protein engineering. Molecular modelling was used to identify three light chain constant domain surface arginine residues, R154, R187 and R210, which were mutated to lysine residues. The mutations did not influence the affinity of the lysine-enriched Fab fragment and its labelling efficiency was found to be approximately 40% higher than that of the wild-type Fab fragment. With low degree of labelling, the affinities of the two Fab fragments were identical and comparable with that of the original monoclonal anti-hAFP IgG. With a higher degree of labelling the affinities of both Fab fragments decreased more than that of the intact IgG since more lysine residues are available for labelling in the additional heavy chain constant domains of the larger molecule. Electrostatic adsorption and covalent immobilization of the Fab fragments were characterized by BIAcore and the lysine-enriched Fab fragment was found to be more efficiently immobilized to an activated carboxymethyl surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/protein/8.2.185 | DOI Listing |
Commun Biol
January 2025
Large Molecules Research, Sanofi, Cambridge, MA, USA.
Antibodies, essential components of adaptive immunity, derive their remarkable diversity primarily from V(D)J gene rearrangements, particularly within the heavy chain complementarity-determining region 3 (CDR-H3) where D genes play a major role. Traditionally, D genes were thought to recombine only in the forward direction, despite having identical recombination signal sequences (12 base pair spacers) at both ends. This observation led us to question whether these symmetrical sequences might enable bidirectional recombination.
View Article and Find Full Text PDFSci Rep
January 2025
Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand.
Nanobodies (Nbs) hold great potential to replace conventional antibodies in various biomedical applications. However, conventional methods for their discovery can be time-consuming and expensive. We have developed a reliable protein selection strategy that combines magnetic activated cell sorting (MACS)-based screening of yeast surface display (YSD) libraries and functional ligand-binding identification by Tat-based recognition of associating proteins (FLI-TRAP) to isolate antigen-specific Nbs from synthetic libraries.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Principal Scientific Officer & Molecular Advisor, Rajiv Gandhi Cancer Institute & Research Centre, New Delhi, India.
Chronic lymphocytic leukemia (CLL) is a less common hematological malignancy in Indian people. It accounts for less than 5% of all leukemias. Information on genomic alteration in CLL is limited immunoglobulin heavy-chain variable region (IGHV) mutational status is considered the most reliable prognostic marker.
View Article and Find Full Text PDFSci Rep
January 2025
Johnson & Johnson, Therapeutics Discovery, Spring House, PA, USA.
Solution-based affinity assays are used for the selection and characterization of proteins that could be developed into therapeutic molecules. However, these assays have limitations for cell-surface proteins as in most cases their purification requires detergent solubilization and are unlikely to assume conformations in solution that resemble their native states in cell membranes. This report describes a novel electrochemiluminescence-based method, called MSD-CAT, for the affinity analysis of antibodies binding to cell-surface receptors.
View Article and Find Full Text PDFProtein Sci
February 2025
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA.
We have developed a portfolio of antibody-based modules that can be prefabricated as standalone units and snapped together in plug-and-play fashion to create uniquely powerful multifunctional assemblies. The basic building blocks are derived from multiple pairs of native and modified Fab scaffolds and protein G (PG) variants engineered by phage display to introduce high pair-wise specificity. The variety of possible Fab-PG pairings provides a highly orthogonal system that can be exploited to perform challenging cell biology operations in a straightforward manner.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!