Growth factors differently regulate astroglial cell differentiation and proliferation. In an effort to understand the early intracellular events promoted by growth factors in astroglial cells, we have determined the effects of insulin-like growth factor I (IGF1), insulin, platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and fibroblast growth factors (FGFs) on phosphatidylinositol-3 kinase (PI(3)-kinase). In astroglial cells cultured in serum-free medium, IGF1, PDGF, and EGF, which stimulate cell proliferation, increased PI(3)-kinase activity immunoprecipitated with anti-phosphotyrosine antibodies as shown by thin layer chromatography and high performance liquid chromatography. FGFa and FGFb, which strongly stimulate proliferation, glutamine synthetase, and deiodinase activities and modify cell morphology, have no effect on PI(3)-kinase activity. Addition of 1 nM PDGF, 10 nM IGF1, or 100 nM EGF to the culture medium rapidly stimulated PI(3)-kinase activity which declined slowly after 2 min. The stimulation of PI(3)-kinase increased with growth factor concentration. The maximum increase in PI(3)-kinase activity occurred with 50 nM IGF1, 1 nM PDGF, or 100 nM EGF. Since insulin was active only at high concentration (1 microM), its effect was probably mediated through IGF1 receptors and not through insulin receptors. IGF1 and PDGF, to a lesser degree, also increased the PI(3)-kinase activity associated with pp60c-src protein. Immunoblots performed with an antibody directed against the p85-subunit of the PI(3)-kinase confirmed that IGF1 increased the number of PI(3)-kinase molecules associated with phosphotyrosine-containing proteins or with c-src protein. Each growth factor affects in a different manner the association of PI(3)-kinase with phosphotyrosine-containing proteins and with pp60c-src and thus probably modulates intracellular signals downstream of PI(3)-kinase in astroglial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jnr.490400605 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!