Peripherin is a neuron-specific intermediate filament (IF) protein, found primarily in phylogenetically old regions of the nervous system. Whereas other neuronal IF genes have only two to three introns and are scattered in the genome, the peripherin gene (PRPH) has a complex intron-exon structure like nonneuronal IF genes that are clustered in tandem arrays, e.g., those encoding the keratins. We used a cosmid containing the human peripherin gene (PRPH) to determine its chromosomal location in relationship to nonneuronal IF genes. Using a rodent-human mapping panel, we localized the PRPH gene to human chromosome 12. Since a cluster of keratin genes maps to 12q12-13, polymorphic markers were developed for PRPH and for one of the keratin genes presumed to be in the cluster, keratin 18 (KRT18). Both markers were typed in CEPH reference families. Pairwise and multipoint analyses of the CEPH data revealed that KRT18 is tightly linked to DNA markers D12S4, D12S22, D12S90, D12S96 and D12S103, which lie between D12S18 and D12S8, with odds greater than 1000:1. These markers are physically located at 12q11-13, thus supporting the fine localization of KRT18 in or near the group of type II keratins in this region. Furthermore, linkage analysis showed that the peripherin gene (PRPH) is tightly linked to KRT18 (Z = 15.73, theta = 0.013), and therefore appears to be in close proximity to the cluster.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02255825DOI Listing

Publication Analysis

Top Keywords

peripherin gene
16
gene prph
12
gene human
8
human chromosome
8
nonneuronal genes
8
cluster keratin
8
keratin genes
8
tightly linked
8
peripherin
5
gene
5

Similar Publications

Article Synopsis
  • * Over nine years, some patients experienced vision deterioration, while others maintained their eyesight, and the research followed three individuals closely to track their visual changes.
  • * Understanding these variations can help develop specific treatments and therapies tailored to individuals with the same genetic variants in this condition.
View Article and Find Full Text PDF

Purpose: Among the genome-editing methods for repairing disease-causing mutations resulting in autosomal dominant retinitis pigmentosa, homology-independent targeted integration (HITI)-mediated gene insertion of the normal form of the causative gene is useful because it allows the development of mutation-agnostic therapeutic products. In this study, we aimed for the rapid optimization and validation of HITI-treatment gene constructs of this approach in developing HITI-treatment constructs for various causative target genes in mouse models of retinal degeneration.

Methods: We constructed the Cas9-driven HITI gene cassettes in plasmid vectors to treat the mouse Rho gene.

View Article and Find Full Text PDF

Developmental expression of calretinin in the mouse cochlea.

Eur J Histochem

November 2024

Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou.

This study investigated the expression of calretinin (CR) in the mouse cochlea from embryonic day 17 (E17) to adulthood through immunofluorescence. At E17, CR immunoreactivity was only detected in the inner hair cells (IHCs). At E19, the IHCs and spiral ganglion neurons (SGNs) begin to express CR.

View Article and Find Full Text PDF

Purpose And Methods: A workshop of affected individuals and their families, clinicians, researchers, and industry representatives was convened in March 2023 to define the knowledge landscape of peripherin 2 (PRPH2) biology and identify challenges and opportunities towards developing PRPH2-associated inherited retinal disease (IRD) treatments.

Results: The results of an online survey and presentations from affected individuals and their family members revealed disease characteristics and impacts on daily living. Scientific sessions highlighted the significant heterogeneity in clinical presentation of PRPH2-related retinopathy; PRPH2's crucial function in rod and cone outer segment formation and maintenance; the usefulness of existing animal and cellular models for understanding disease pathophysiology; and possible therapeutic approaches for autosomal dominant PRPH2-associated IRDs, including gene-specific therapies and gene-agnostic approaches.

View Article and Find Full Text PDF

Mutations in PRPH2 are a relatively common cause of sight-robbing inherited retinal degenerations (IRDs). Peripherin-2 (PRPH2) is a photoreceptor-specific tetraspanin protein that structures the disk rim membranes of rod and cone outer segment (OS) organelles, and is required for OS morphogenesis. PRPH2 is noteworthy for its broad spectrum of disease phenotypes; both inter- and intra-familial heterogeneity have been widely observed and this variability in disease expression and penetrance confounds efforts to understand genotype-phenotype correlations and pathophysiology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!