Download full-text PDF

Source

Publication Analysis

Top Keywords

chromosomal identification
4
identification simulium
4
simulium edwardsellum
4
edwardsellum mengense
4
mengense species
4
species diptera
4
diptera simuliidae
4
chromosomal
1
simulium
1
edwardsellum
1

Similar Publications

Small RNA sequencing analysis in two chickpea genotypes, JG 62 (Fusarium wilt-susceptible) and WR 315 (Fusarium wilt-resistant), under Fusarium wilt stress led to identification of 544 miRNAs which included 406 known and 138 novel miRNAs. A total of 115 miRNAs showed differential expression in both the genotypes across different combinations. A miRNA, Car-miR398 targeted copper chaperone for superoxide dismutase (CCS) that, in turn, regulated superoxide dismutase (SOD) activity during chickpea-Foc interaction.

View Article and Find Full Text PDF

Precursors of microRNAs (pre-miRNAs) are less used in silico to mine miRNAs. This study developed PmiR-Select based on covariance models (CMs) to identify new pre-miRNAs, detecting conserved secondary structural features across RNA sequences and eliminating the redundancy. The pipeline preceded PmiR-Select filtered 20% plant pre-miRNAs (from 38589 to 8677) from miRBase.

View Article and Find Full Text PDF

Background: Many complex traits and diseases show sex-specific biases in clinical presentation and prevalence. For instance, two-thirds of AD cases are female. Studies suggest that women might have higher cognitive reserve but steeper cognitive decline in older age.

View Article and Find Full Text PDF

Background: According to data from the Alzheimer's Association, more than two-thirds of patients living with Alzheimer's disease (AD) in the United States are women. The interplay between aging and hormone depletion during menopause has been proposed as a leading cause, but the molecular underpinnings of this vulnerability are not fully understood. On the one hand, approaches that seek to supplement estrogens to rescue pre-menopausal hormonal levels have had contradictory outcomes in clinical trials.

View Article and Find Full Text PDF

Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!