Prorenin secretion by human villous placenta is known to be stimulated by activation of adenylate cyclase and enhanced cyclic AMP (cAMP) generation. Placental tissue contains predominantly type III (cGMP-inhibited) and type IV (cAMP-specific) phosphodiesterases (PDEs), which inactivate cAMP. To evaluate the role of PDE subtypes in the regulation of prorenin secretion by human placenta, explants were cultured in the presence of isobutylmethylxanthine (IBMX), a non-selective PDE inhibitor, and selective inhibitors for various PDE subtypes. Inhibition of PDE subtypes with cilostamide (type III), Ro 20-1724 (type IV) and zardaverine (types III and IV) increased prorenin release. Inhibition of type I (Ca(2+)/calmodulin-dependent) PDE by 8-MeoM-IBMX and of type V (cGMP-specific) PDE by zaprinast or dipyridamole did not affect prorenin secretion. The stimulation of prorenin secretion by PDE inhibitors was attenuated by cAMP-dependent protein kinase inhibition. The selective PDE inhibitors caused a parallel increase in media cAMP and prorenin and also increased tissue prorenin levels. These studies demonstrate that cAMP degradation by type III and IV PDE isoenzymes is a major regulatory mechanism for placental prorenin secretion. It is suggested that enhancers of adenylate cyclase activity are constitutively present in placenta and influence prorenin synthesis and release.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0006-2952(95)00080-j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!