Active, recombinant p68 reverse transcriptase (RT) from human immunodeficiency virus type 2 (HIV-2), with an NH2-terminal extension containing a hexahistidine sequence was isolated from extracts of Escherichia coli by immobilized metal affinity chromatography. Treatment of the purified p68/p68 homodimer of HIV-2 RT with recombinant HIV-2 protease generates stable, active heterodimer (p68/p58) that is resistant to further hydrolysis. Analysis of this p68/p58 HIV-2 RT heterodimer revealed that while one subunit is intact p68, the p58 subunit is COOH-terminally truncated by cleavage, not at Phe440 as is seen in processing of the p66/p66 HIV-1 RT homodimer by HIV-1 protease, but at Met484. The expected COOH-terminal p10 fragment resulting from hydrolysis of p68 at Met484 is not released intact, but undergoes further cleavage at Asn494, Met503, and Tyr532. Processing of p68/p68 HIV-2 RT with the HIV-1 protease led to cleavage of the Phe440-Tyr441 bond, exactly as is seen with p66/p66 HIV-1 RT, to give the analogous p53 subunit. Studies of a peptide substrate modeled after residues 437-444 in HIV-2 RT showed that while the HIV-1 protease was able to cleave the Phe440 bond, this bond was resistant to cleavage by the HIV-2 enzyme. Our findings provide a rationale for the previous observation that the RT heterodimer isolated from HIV-2 lysates is larger than that from HIV-1. We conclude that the p68/p58 HIV-2 RT heterodimer, containing the Met484 truncated p58 subunit, is a biologically relevant form of the enzyme in vivo.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hiv-1 protease
12
hiv-2
9
human immunodeficiency
8
p68/p58 hiv-2
8
hiv-2 heterodimer
8
p58 subunit
8
p66/p66 hiv-1
8
hiv-2 hiv-1
8
hiv-1
6
differential processing
4

Similar Publications

The integration of nanotechnology into antiretroviral drug delivery systems presents a promising avenue to address challenges posed by long-term antiretroviral therapies (ARTs), including poor bioavailability, drug-induced toxicity, and resistance. These limitations impact the therapeutic effectiveness and quality of life for individuals living with HIV. Nanodrug delivery systems, particularly nanoemulsions, have demonstrated potential in improving drug solubility, enhancing bioavailability, and minimizing systemic toxicity.

View Article and Find Full Text PDF

Mechanism and Kinetics of HIV-1 Protease Activation.

Viruses

November 2024

Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.

The HIV-1 protease is a critical enzyme for viral replication. Because protease activity is necessary to generate mature infectious virions, it is a primary target of antiretroviral treatment. Here, we provide an overview of the mechanisms regulating protease activation and the methods available to assess protease activity.

View Article and Find Full Text PDF

Objectives: We assessed HIV-1 drug resistance profiles among people living with HIV (PLWH) with detectable viral load (VL) and on dolutegravir-based antiretroviral therapy (ART) in Botswana.

Methods: The study utilised available 100 residual HIV-1 VL samples from unique PLWH in Francistown who had viraemia at-least 6 months after initiating ART in Botswana's national ART program from November 2023 to January 2024. Viraemia was categorized as low-level viraemia (LLV) (VL: 200-999 copies/mL) or virologic failure (VF) (VL ≥1000 copies/mL).

View Article and Find Full Text PDF

HIV-1 protease inhibitors and mechanisms of HIV-1's resistance.

Glob Health Med

December 2024

Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

Current anti-HIV drugs have significantly improved the prognosis of HIV infected patients so much so that it is now considered a chronic disease, and adherence to medications keeps non-detectable amounts of the virus in the body. However, HIV is still able to generate drug resistance substitutions. Protease inhibitors (PIs) in combination with other classes of anti-HIV drugs constitute an important part of the anti-HIV drug regimen.

View Article and Find Full Text PDF

Triterpene esters from Uncaria rhynchophylla hooks as potent HIV-1 protease inhibitors and their molecular docking study.

Sci Rep

December 2024

Department of Pharmacognosy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.

Despite significant advancements with combination anti-retroviral agents, eradicating human immunodeficiency virus (HIV) remains a challenge due to adverse effects, adherence issues, and emerging viral resistance to existing therapies. This underscores the urgent need for safer, more effective drugs to combat resistant strains and advance acquired immunodeficiency syndrome (AIDS) therapeutics. Eight triterpene esters (1-8) were identified from Uncaria rhynchophylla hooks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!