Bleomycin mediates cell wall damage in the yeast Saccharomyces cerevisiae. Bleomycin treatments in the presence of Fe(II) increased the rate of spheroplast formation by lytic enzymes by 5- to 40-fold. Neither Fe(III) nor other tested ions caused significant cell wall damage in the presence of bleomycin. The effect of bleomycin-Fe(II) on the cell wall mimicked the characteristics of bleomycin-Fe(II)-mediated DNA damage in dependence on aeration, inhibition by ascorbate, and potentiation by submillimolar concentrations of sodium phosphate. Bleomycin-mediated cell wall damage was time and dose dependent, with incubations as short as 20 min and drug concentrations as low as 3.3 x 10(-7)M causing measurable cell wall damage in strain CM1069-40. These times and concentrations are within the range of effectiveness for bleomycin-mediated DNA damage and for the cytotoxicity of the drug. Although Fe(III) was inactive with bleomycin and O2, the bleomycin-Fe(III) complex damaged walls and lysed cells in the presence of H2O2. H2O2 causes similar activation of bleomycin-Fe(III) in assays of DNA scission. These results suggest that an activated bleomycin-Fe-O2 complex disrupts essential cell wall polymers in a manner analogous to bleomycin-mediated cleavage of DNA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC177059 | PMC |
http://dx.doi.org/10.1128/jb.177.12.3534-3539.1995 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!