Two water channel homologs were cloned recently from rat kidney, mercurial-insensitive water channel (MIWC) and glycerol intrinsic protein (GLIP). Polyclonal antibodies were raised against synthetic C-terminal peptides and purified by affinity chromatography. MIWC and GLIP antibodies recognized proteins in rat kidney with an apparent molecular mass of 30 and 27 kDa, respectively, and did not cross-react. By immunofluorescence, MIWC and GLIP were expressed together on the basolateral plasma membrane of collecting duct principal cells in kidney. By immunohistochemistry, MIWC and GLIP were expressed on tracheal epithelial cells with greater expression of GLIP on the basal plasma membrane and MIWC on the lateral membrane; only MIWC was expressed in bronchial epithelia. In eye, GLIP was expressed in conjunctival epithelium, whereas MIWC was found in iris, ciliary body, and neural cell layers in retina. MIWC and GLIP colocalized on the basolateral membrane of villus epithelial cells in colon and brain ependymal cells. Expression of MIWC and GLIP was not detected in small intestine, liver, spleen, endothelia, and cells that express water channels CHIP28 or WCH-CD. These studies suggest water/solute transporting roles for MIWC and GLIP in the urinary concentrating mechanism, cerebrospinal fluid absorption, ocular fluid balance, fecal dehydration, and airway humidification. The unexpected membrane colocalization of MIWC and GLIP in several tissues suggests an interaction at the molecular and/or functional levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC41937PMC
http://dx.doi.org/10.1073/pnas.92.10.4328DOI Listing

Publication Analysis

Top Keywords

miwc glip
28
water channel
12
glip expressed
12
miwc
11
glip
10
mercurial-insensitive water
8
glycerol intrinsic
8
intrinsic protein
8
rat kidney
8
plasma membrane
8

Similar Publications

A 1.8-kb cDNA clone (designed hKID, gene symbol AQP2L) with homology to the aquaporins was isolated from a human kidney cDNA library. The longest open reading frame of 846 bp encoded a 282-amino-acid hydrophobic protein that contained the conserved NPA motifs of MIP family members.

View Article and Find Full Text PDF

The RNase protection assay was applied to quantify mRNA expression of five principal mammalian water channels in 18 different rat tissues, and to determine the influence of dehydration on renal water channel expression. Probes consisted of labeled cRNAs transcribed from cDNA fragments of rat CHIP28 (AQP-1, bp 238-575 of coding sequence), AQP-CD (AQP2, bp 53-606), MIWC (AQP4, bp 235-572), GLIP (AQP3, bp 219-604), and AQP5 (bp 56-612). Results were normalized to expression of rat beta-actin by quantitative densitometry of autoradiograms.

View Article and Find Full Text PDF

There is now firm evidence that water transporting proteins are expressed in renal and extrarenal tissues. In the kidney, proximal-type (CHIP28) and collecting duct (WCH-CD) water channels have been identified. We have cloned three kidney cDNAs with homology to the water channel (aquaporin) family, including a mercurial-insensitive water channel (MIWC), and a glycerol-transporting protein (GLIP) in collecting duct basolateral membrane.

View Article and Find Full Text PDF

It was shown recently that water channel homologs MIWC (mercurial insensitive water channel) and GLIP (glycerol intrinsic protein) colocalized in basolateral membranes of kidney collecting duct, tracheal and colonic epithelia, and in brain pia mater. We report here an extensive immunolocalization study of MIWC and GLIP in non-epithelial and glandular epithelial tissues in rat. Immunogold electron microscopy confirmed colocalization of MIWC and GLIP in basolateral membrane of principal cells in kidney collecting duct.

View Article and Find Full Text PDF

Two water channel homologs were cloned recently from rat kidney, mercurial-insensitive water channel (MIWC) and glycerol intrinsic protein (GLIP). Polyclonal antibodies were raised against synthetic C-terminal peptides and purified by affinity chromatography. MIWC and GLIP antibodies recognized proteins in rat kidney with an apparent molecular mass of 30 and 27 kDa, respectively, and did not cross-react.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!