Phosphorodithioate (PS2) oligodeoxynucleotides (oligos) represent a relatively new class of backbone-modified oligo that have potential use as antisense agents. PS2 oligos are isoelectronic with phosphodiester (PO) and phosphoromonothioate (PS) oligos, and are nuclease resistant. However, unlike their PS congeners, PS2 oligos do not contain chiral centers. Little is known about the manner in which PS2 oligos interact with biological systems. In this study, we compare the cellular pharmacology of PS and PS2 oligos in HL60 cells. Cell surface binding, internalization, and compartmentalization are examined. Furthermore, the ability of PS and PS2 oligos to bind to rsCD4 and bFGF and to inhibit the activity of protein kinase C (PKC) is examined. Although the behavior of PS2 oligos closely parallels that of PS oligos, PS2 oligos appear to interact with some biological systems in a slightly different manner than PS oligos. These results indicate that PS2 oligos may have therapeutic potential other than as antisense agents.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ard.1994.4.269DOI Listing

Publication Analysis

Top Keywords

ps2 oligos
32
oligos
12
ps2
9
cellular pharmacology
8
potential antisense
8
antisense agents
8
interact biological
8
biological systems
8
pharmacology protein
4
protein binding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!