Previous studies have revealed that expression of K+ channels in osteoclasts correlates with cell morphology and is influenced by interaction with the extracellular matrix. In this study, we investigated the electrophysiological properties of an outwardly rectifying K+ channel in rat and mouse osteoclasts using patch-clamp techniques. Cell-attached patch recordings revealed a channel of approximately 14 pS conductance that opened upon depolarization, and had a reversal potential close to that predicted for a K+ channel. Channel activity was transient; inactivation of ensemble currents, like that of whole-cell currents, occurred as a single exponential process. Both single-channel and macroscopic currents exhibited use-dependent inactivation in response to repetitive depolarizations. Two scorpion toxins, margatoxin and charybdotoxin, blocked this transient K+ channel, with half-maximal inhibition at 200 pM and 5 nM, respectively. In contrast, dendrotoxin (500 nM) had little effect. In summary, the outwardly rectifying K+ channel in osteoclasts resembles the Shaker-related K+ channel, Kv1.3. When membrane potential was recorded in whole-cell configuration, charybdotoxin (50 nM) caused a depolarization of 5 to 10 mV from resting levels of -50 mV or more positive; therefore this K+ channel contributes to the membrane potential of osteoclasts under some conditions. To investigate the molecular nature of osteoclast K+ channels, we performed RT-PCR on osteoclast RNA using primers for Kv1.3 and the inward rectifier, IRK1. mRNA encoded by Kv1.3 and IRK1 was detected and message identity confirmed by restriction enzyme digestion and sequence analysis. We conclude that osteoclasts exhibit, in addition to the previously described inward rectifier, an outwardly rectifying K+ conductance with properties of the Kv1.3. channel.
Download full-text PDF |
Source |
---|
iScience
December 2024
Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
Two-pore domain, outwardly rectifying potassium (TOK) channels are exclusively expressed in fungi. Human fungal pathogen TOK channels are potential antifungal targets, but TOK channel modulation in general is poorly understood. Here, we discovered that TOK (CaTOK) is regulated by extracellular pH, in contrast to TOK channels from other fungal species tested.
View Article and Find Full Text PDFJ Gen Physiol
January 2025
Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, USA.
Pannexin 1 (PANX1) is a member of a topologically related and stoichiometrically diverse family of large pore membrane ion channels that support the flux of signaling metabolites (e.g., ATP) and fluorescent dyes.
View Article and Find Full Text PDFElife
December 2024
Department of Neurobiology, University of Chicago, Chicago, United States.
In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, g, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to K1.
View Article and Find Full Text PDFBiophys J
November 2024
Department of Biomedical Sciences, Western University of Health Sciences, Pomona, California. Electronic address:
Under physiological conditions, mammalian PIEZO channels (PIEZO1 and PIEZO2) elicit transient currents mostly carried by monovalent and divalent cations. PIEZO1 is also known to permeate chloride ions, with a Cl/Na permeability ratio of about 0.2.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, USA; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, USA; Institute for Drug and Alcohol Studies, School of Medicine, Virginia Commonwealth University, USA. Electronic address:
Intracellular chloride (Cl) homeostasis is a critical regulator of neuronal excitability. Voltage-dependent neuronal Cl channels remain the least understood in terms of their role as a source of Cl entry controlling excitability. We have shown recently that striatal medium spiny neurons (MSNs) express a functional Cl conducting ClC-1-like channel with properties similar but not identical to native ClC-1 channels (Yarotskyy, V.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!