Comparative genomic hybridization (CGH) makes it possible to detect losses and gains of DNA sequences along all chromosomes in a tumor specimen based on the hybridization of differentially labeled tumor and normal DNA to normal human metaphase chromosomes. In this study, CGH analysis was applied to the identification of genomic imbalances in 26 bladder cancers in order to gain information on the genetic events underlying the development and progression of this malignancy. Losses affecting 11p, 11q, 8p, 9, 17p, 3p, and 12q were all seen in more than 20% of the tumors. The minimal common region of loss in each chromosome was identified based on the analysis of overlapping deletions in different tumors. Gains of DNA sequences were most often found at chromosomal regions distinct from the locations of currently known oncogenes. The bands involved in more than 10% of the tumors were 8q21, 13q21-q34, 1q31, 3q24-q26, and 1p22. In conclusion, these CGH data highlight several previously unreported genetic alterations in bladder cancer. Further detailed studies of these regions with specific molecular genetic techniques may lead to the identification of tumor suppressor genes and oncogenes that play an important role in bladder tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/gcc.2870120309DOI Listing

Publication Analysis

Top Keywords

dna sequences
12
bladder cancer
8
comparative genomic
8
genomic hybridization
8
gains dna
8
identification gains
4
gains losses
4
dna
4
losses dna
4
sequences primary
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!