This study was undertaken to determine whether blood flow modulates the adhesive property of vascular endothelial cells to lymphocytes and, if it does, what adhesion molecules are involved. Cultured mouse endothelial cells were exposed to medium flow in a parallel plate chamber, and binding assay using fluorescence-labeled lymphocytes was carried out. The adhesion rate of endothelial cells to lymphocytes, which was high in the static control state, decreased when exposed to shear stress (1.5 dynes/cm2) for 6 h. The treatment of static endothelial cells with a monoclonal antibody of vascular cell adhesion molecule-1 (VCAM-1) depressed the adhesion rate to the same extent as that caused by flow, while monoclonal antibodies of CD44 and intercellular adhesion molecule-1 had no effect on it. Flow cytometric analysis revealed that the application of flow decreased markedly the amount of VCAM-1 expressed on the cell surface. A reverse transcriptase-polymerase chain reaction of mRNA showed that flow depressed VCAM-1 mRNA levels. These results suggest that blood flow can modulate the adhesive property of endothelial cells to lymphocytes via affecting the surface expression of adhesion molecules, e.g., down-regulation of VCAM-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1749-6632.1994.tb17314.x | DOI Listing |
Circ Res
January 2025
Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN.
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Ovarian Physiopathology Studies Laboratory, Institute of Experimental Biology and Medicine (IByME) - CONICET, Buenos Aires, Argentina.
Purpose: This study aimed to evaluate the long-term impact of mild COVID-19 infection and COVID-19 vaccination on ovarian function in patients undergoing assisted reproductive technology (ART). Specifically, we assessed ovarian outcomes between 9 and 18 months post-infection and investigated the effects of COVID-19 vaccines (inactivated virus and adenovirus) on reproductive parameters.
Methods: The study included two objectives: (a) examining ovarian function in post-COVID-19 patients (9-18 months post-infection) compared to a control group and (b) comparing reproductive outcomes in vaccinated versus unvaccinated patients.
Biomarkers
January 2025
PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland.
Background: Growing evidence indicates that noncombustible products could be a tobacco harm reduction tool for smokers who do not quit. The Tobacco Heating System (THS) emits substantially lower levels of harmful cigarette smoke constituents, and previous randomized clinical studies showed improved levels of biomarkers of potential harm (BoPH) linked to smoking-related disease.
Methods: In this cross-sectional study of healthy participants (n = 982) who (i) smoked cigarettes, (ii) had voluntarily switched from smoking to THS use, or (iii) formerly smoked, blood and urine samples were assayed for nine BoPH.
Arterioscler Thromb Vasc Biol
January 2025
Research Center of Clinical Medicine, Affiliated Hospital, Nantong University, China. (X.W., D.L.).
Background: Hyperglycemia is a major contributor to endothelial dysfunction and blood vessel damage, leading to severe diabetic microvascular complications. Despite the growing body of research on the underlying mechanisms of endothelial cell (EC) dysfunction, the available drugs based on current knowledge fall short of effectively alleviating these complications. Therefore, our endeavor to explore novel insights into the cellular and molecular mechanisms of endothelial dysfunction is crucial for the field.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
January 2025
Department of Cardiovascular Medicine, The University of Tokyo, Bunkyo-ku, Japan. (H. Yagi, H.A., Q.L., A.S.-K., M.U., H.K., R.M., A.S., S.O., H.T., Norifumi Takeda, I.K.).
Background: Marfan syndrome (MFS) is an inherited disorder caused by mutations in the gene encoding fibrillin-1, a matrix component of extracellular microfibrils. The main cause of morbidity and mortality in MFS is thoracic aortic aneurysm and dissection, but the underlying mechanisms remain undetermined.
Methods: To elucidate the role of endothelial XOR (xanthine oxidoreductase)-derived reactive oxygen species in aortic aneurysm progression, we inhibited in vivo function of XOR either by endothelial cell (EC)-specific disruption of the gene or by systemic administration of an XOR inhibitor febuxostat in MFS mice harboring the missense mutation p.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!