Transport of lysine by microvillous membranes was investigated by characterization of L-[3H]lysine uptake in membrane vesicles isolated from human placentas. At least one Na(+)-independent system was observed at 22 degrees C and two systems at 37 degrees C. Lysine concentration dependence data were fit by a one- or two-system model with a Michaelis-Menten constant (Km) of 124 +/- 28 microM and a maximum velocity (Vmax) of 33.1 +/- 7.7 pmol.mg protein-1.min-1 at 22 degrees C and with Km values of 1 +/- 0.6 and 245 +/- 51 microM and Vmax values of 0.14 +/- 0.07 and 45.8 +/- 8.7 pmol.mg protein-1.30 s-1 at 37 degrees C. In the presence of N-ethylmaleimide, the uptake (37 degrees C) data were fit by a one-system model with kinetic parameters similar to the lower Km system. Uptake of L-lysine in the absence of Na+ was inhibited completely by L-arginine, L-histidine, and L-homoarginine. In the presence of Na+, uptake was inhibited completely by these same three amino acids and L-leucine but only partially by other neutral amino acids. To compare directly microvillous and basal membrane from the same placenta, we examined the inhibition of 20 microM lysine uptake in the presence of Na+. Inhibition by L-leucine was similar in the two membranes. However, L-homoserine, L-alanine, and L-phenylalanine over a wide concentration range inhibited substantially less in microvillous (at both temperatures) than in basal membrane.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.1995.268.3.C755 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!