Cytotactin/tenascin is an extracellular matrix glycoprotein expressed in a restricted anteroposterior pattern during vertebrate development and is reexpressed in the adult during wound healing, tumorigenesis, and nerve regeneration. Previously, we have characterized the chicken cytotactin promoter and have shown its regulation by homeobox gene products in vitro. We have now isolated the promoter for the mouse tenascin gene in order to determine whether common or different DNA regulatory elements control the expression of this gene in these two species. Like the chicken cytotactin gene, the mouse tenascin gene has a single RNA start site that lies 27 bp downstream of a TATA box. A 4028-bp region of DNA upstream of the mouse tenascin gene was sequenced and examined for regulatory motifs in common with the upstream sequence from the chicken cytotactin promoter. Two hundred thirty base pairs of the proximal promoter regions from both genes had an extended sequence similarity and contained common regulatory motifs such as two tracts of homopolymeric dA.dT sequence, an octamer motif, an ATTA (TAAT) motif which is a common core sequence for binding of homeodomain transcription factors, and a TATA-box/cap-site region. Reporter gene constructs with various 5' deletions of the mouse tenascin upstream sequence were tested in transient transfections of mouse NIH 3T3 and chicken embryo fibroblasts. The conserved proximal promoter region of tenascin was responsible for most of the positive regulatory activity. In addition, an upstream region (-2478 to -247) repressed proximal promoter activity in mouse fibroblasts and also in chicken embryo fibroblasts. These data indicate that both the structure and function of the cytotactin/tenascin proximal promoters have remained conserved over 250 million years.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC42437 | PMC |
http://dx.doi.org/10.1073/pnas.92.6.2131 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how variants contribute to the spectrum of axial skeletal disorders is not well understood.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Department of Bioscience, University of Oslo, Oslo, Norway.
Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, PR China.
Inadequate tendon healing and heterotopic bone formation result in substantial pain and disability, yet the specific cells responsible for tendon healing remain uncertain. Here we identify a CD26 tendon stem/progenitor cells residing in peritendon, which constitutes a primitive stem cell population with self-renewal and multipotent differentiation potentials. CD26 tendon stem/progenitor cells migrate into the tendon midsubstance and differentiation into tenocytes during tendon healing, while ablation of these cells led to insufficient tendon healing.
View Article and Find Full Text PDFCell Death Differ
January 2025
State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
During the early stage of tissue injury, macrophages play important roles in the activation of stem cells for further regeneration. However, the regulation of macrophages during bone regeneration remains unclear. Here, the extracellular matrix (ECM) tenascin-C (TNC) is found to express in the periosteum and recruit inflammatory macrophages.
View Article and Find Full Text PDFJ Physiol Pharmacol
October 2024
Department of Paediatrics, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai Province, China.
Asthma is a prevalent chronic inflammatory airway disease that affects both adults and children. Inflammation-induced airway remodeling can lead to irreversible damage to the airways. Traditional Chinese medicine (TCM) plays a significant role in healthcare, offering potential improvements for chronic airway inflammation associated with asthma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!