Infection with lymphocytic choriomeningitis virus induces the generation of CD8+ cytotoxic T lymphocytes (CTL). In the H-2b mouse, this cellular immune response is directed against three viral structural epitopes (GP1, GP2, and NP) presented by the major histocompatibility complex (MHC) class I H-2Db molecules. This study was undertaken to delineate which sequence of each of these three epitopes is optimal for MHC binding and CTL recognition. The first step was to synthesize the relevant peptides truncated at the N or C terminus and flanking the crucial H-2Db-anchoring Asn residue in position 5. These peptides were then tested (i) for their binding properties in two H-2Db-specific assays with viable cells (upregulation of H-2Db expression on the surface of RMA-S cells and competition against the Db-restricted peptide 125I-gp276-286 on T2-Db cells) and (ii) for their abilities to sensitize H-2b target cells for CTL lysis in vitro. For optimal antigenic presentation, all three epitopes required the MHC-anchoring Asn residue at position 5 of their sequences. The results clearly and unambiguously delineated optimal lengths for two of the epitopes and two options for the third. NP appeared as a conventional 9-amino-acid (aa)-long peptide, np396-404 (FQPQNGQFI). GP2 was defined as a longer peptide (11 aa), gp276-286 (SGVENPGGYCL). Characterization of the GP1 epitope was more complex: the 9-aa-long peptide gp33-41 (KAVYNFATC) and the carboxyl-extended 11-aa-long peptide gp33-43 (KAVYN FATCGI) were both established as possible optimal sequences depending on the cell line used to test binding and lysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC188900PMC
http://dx.doi.org/10.1128/JVI.69.4.2297-2305.1995DOI Listing

Publication Analysis

Top Keywords

lymphocytic choriomeningitis
8
choriomeningitis virus
8
major histocompatibility
8
histocompatibility complex
8
cytotoxic lymphocytes
8
three epitopes
8
asn residue
8
residue position
8
optimal
5
peptide
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!