Mutations induced by dacarbazine activated with cytochrome P-450.

Mutat Res

Grace Cancer Drug Center, Department of Experimental Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263.

Published: March 1995

The mutagenicity of the antitumor drug dacarbazine (DTIC) is due to alkylation of cellular DNA by metabolites resulting from the metabolism of this drug by the mixed function oxidase system. In the present study, we used an in vitro shuttle vector assay to study the base and sequence specificity of mutagenesis by DTIC. The shuttle vector plasmid pSP189 was treated with DTIC (1-2.5 mM) in vitro in a reconstituted cytochrome P-450 system at 37 degrees C for either 30 or 60 min. SupF tRNA gene insert contained in the plasmid was sequenced after replication of the drug-treated plasmid in human Ad 293 cells followed by amplification in indicator bacteria. Mutagenesis of DTIC in this system was dependent upon the presence of the cytochrome P-450 reconstituted system and NADPH. Mutations induced by DTIC included single base substitutions (35%), single base deletions (30.5%), single base insertions (19.4%) and large deletions (13.8%). Among the substitutions, transversions and transitions were in the ratio of 1:0.7. Base pairs 108 and 127 in the SupF tRNA of the pSP189 were identified as mutational hot spots.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0027-5107(94)00182-5DOI Listing

Publication Analysis

Top Keywords

cytochrome p-450
12
single base
12
mutations induced
8
shuttle vector
8
mutagenesis dtic
8
supf trna
8
dtic
5
base
5
induced dacarbazine
4
dacarbazine activated
4

Similar Publications

Meiosis and retinoic acid in the mouse fetal gonads: An unforeseen twist.

Curr Top Dev Biol

January 2025

Université de Strasbourg, IGBMC UMR 7104, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Inserm, UMR-S 1258, Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. Electronic address:

In mammals, differentiation of germ cells is crucial for sexual reproduction, involving complex signaling pathways and environmental cues defined by the somatic cells of the gonads. This review examines the long-standing model positing that all-trans retinoic acid (ATRA) acts as a meiosis-inducing substance (MIS) in the fetal ovary by inducing expression of STRA8 in female germ cells, while CYP26B1 serves as a meiosis-preventing substance (MPS) in the fetal testis by degrading ATRA and preventing STRA8 expression in the male germ cells until postnatal development. Recent genetic studies in the mouse challenge this paradigm, revealing that meiosis initiation in female germ cells can occur independently of ATRA signaling, with key roles played by other intrinsic factors like DAZL and DMRT1, and extrinsic signals such as BMPs and vitamin C.

View Article and Find Full Text PDF

In vitro comparative analysis of metabolic capabilities and inhibitory profiles of selected CYP2D6 alleles on tramadol metabolism.

Clin Transl Sci

February 2025

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, Florida, USA.

Tramadol, the 41st most prescribed drug in the United States in 2021 is a prodrug activated by CYP2D6, which is highly polymorphic. Previous studies showed enzyme-inhibitor affinity varied between different CYP2D6 allelic variants with dextromethorphan and atomoxetine metabolism. However, no study has compared tramadol metabolism in different CYP2D6 alleles with different CYP2D6 inhibitors.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Transcriptome Analysis of and Functional Validation of CYP80s Involved in Benzylisoquinoline Alkaloid Biosynthesis.

Molecules

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.

The medicinal plant is rich in aporphine alkaloids, a type of benzylisoquinoline alkaloid (BIA), with aporphine being the representative and most abundant compound, but our understanding of the biosynthesis of BIAs in this plant has been relatively limited. Previous research reported the genome of and preliminarily identified the norcoclaurine synthase (NCS), which is involved in the early stages of the BIA biosynthetic pathways. However, the key genes promoting the formation of the aporphine skeleton have not yet been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!