Although the association between asbestos exposure and mesothelioma development has been established for decades, very little is known regarding the molecular mechanism(s) by which asbestos fibers induce this disease. In this series of experiments, the potential for transforming growth factor alpha (TGF-alpha) to act as an autocrine growth factor in transformed mesothelial cells was examined in rats, a model system frequently used to assess the tumorigenic potential of fibrous particulates. Both asbestos-transformed cells and spontaneously transformed cells expressed functional EGF receptors, although only the asbestos-transformed cells expressed TGF-alpha. Expression of TGF-alpha transcripts was correlated with secretion of picogram amounts of growth factor into conditioned medium by the asbestos-transformed cells. In addition, whereas TGF-alpha inhibited the growth of spontaneously transformed mesothelial cells, it stimulated the growth of asbestos-transformed cells. Neutralizing antibody that recognized TGF-alpha secreted by the asbestos-transformed cells was able to inhibit the growth of these cells. Taken together, these data indicate that TGF-alpha acts as an autocrine growth factor for asbestos-transformed rat mesothelial cells. Therefore, in asbestos-transformed mesothelial cells, altered production and responsiveness to TGF-alpha distinguish these cells from spontaneously transformed mesothelial cells. These data suggest that differences in mesothelioma etiology may be reflected in differences in the molecular alterations present in these tumors.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mesothelial cells
24
growth factor
20
asbestos-transformed cells
20
cells
14
autocrine growth
12
transformed mesothelial
12
spontaneously transformed
12
growth
8
transforming growth
8
factor alpha
8

Similar Publications

MAIT Cell-Mediated Immune Mechanisms of Dialysis-Induced Peritoneal Fibrosis and Therapeutic Targeting.

J Am Soc Nephrol

January 2025

Nephrology Division, Department of Medicine, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China.

Background: Peritoneal fibrosis is a serious complication of long-term peritoneal dialysis (PD) and abdominal surgeries, yet effective treatments remain elusive. Given the known roles of mucosal-associated invariant T (MAIT) cells in immune responses and fibrotic diseases, we investigated their involvement in PD-induced peritoneal fibrosis to identify potential therapeutic targets.

Methods: We employed single-cell RNA sequencing (scRNA-seq) and flow cytometry to characterize the activation and function of peritoneal MAIT cells in patients undergoing long-term PD.

View Article and Find Full Text PDF

Decoding the Molecular Enigma Behind Asbestos and Fibrous Nanomaterial-induced carcinogenesis.

J Occup Health

January 2025

Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.

Objectives: Natural fibrous mineral, asbestos, has been useful in industry for many centuries. In the 1960's, epidemiology had recognized the association between asbestos exposure and mesothelioma and the IARC designated all kinds of asbestos as Group 1 in 1987. However, various scientific enigmas remained regarding the molecular mechanisms of asbestos-induced mesothelial carcinogenesis.

View Article and Find Full Text PDF

Methylglyoxal-Stimulated Mesothelial Cells Prompted Fibroblast-to-Proto-Myofibroblast Transition.

Int J Mol Sci

January 2025

Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan.

During long-term peritoneal dialysis, peritoneal fibrosis (PF) often happens and results in ultrafiltration failure, which directly leads to the termination of dialysis. The accumulation of extracellular matrix produced from an increasing number of myofibroblasts was a hallmark characteristic of PF. To date, glucose degradation products (GDPs, i.

View Article and Find Full Text PDF

68Ga-FAPI PET/CT Depicted Non-FDG-Avid Malignant Peritoneal Mesothelioma.

Clin Nucl Med

January 2025

Department of Ultrasound, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China.

Malignant peritoneal mesothelioma (MPM) is a rare and aggressive malignancy of mesothelial cells in the peritoneum. Herein, we describe the 68Ga-FAPI and 18F-FDG PET/CT findings of MPM in a 41-year-old man. In the present case, the primary and metastatic tumors showed intense 68Ga-FAPI accumulation but no significantly increased 18F-FDG uptake.

View Article and Find Full Text PDF

Background: Malignant mesotheliomas are aggressive forms of tumors arising from mesothelial cells. The most common type is malignant pleural mesothelioma, which progresses rapidly and leads to pleural effusion. It typically affects older men and is strongly associated with asbestos exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!