Differences in antigenicity of E2 in Semliki Forest virus particles and in infected cells.

Arch Virol

Institute of Medical Virology, Justus-Leibig University Giessen, Federal Republic of Germany.

Published: November 1994

Using six monoclonal antibodies to epitopes a-f on the glycoprotein E2 of Semliki Forest virus (SFV) we found antigenic differences between E2 in infected cells and in virus particles, respectively, if glycosylation was impaired by 2-deoxy-D-glucose or inhibited by N-methyl-1-deoxynojirimycin. Furthermore we concluded that a conformational change of E2 takes place on virus budding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7086913PMC
http://dx.doi.org/10.1007/BF01310027DOI Listing

Publication Analysis

Top Keywords

semliki forest
8
forest virus
8
virus particles
8
infected cells
8
differences antigenicity
4
antigenicity semliki
4
virus
4
particles infected
4
cells monoclonal
4
monoclonal antibodies
4

Similar Publications

The Current Progress in the Quest for Vaccines Against the Semliki Forest Virus Complex.

Med Res Rev

January 2025

Department of Microbiology and Immunology, Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.

The Semliki Forest virus (SFV) complex comprises of arboviruses that are transmitted by arthropod vectors and cause acute febrile illness in humans. In the last seven decades, re-emergence of these viruses has resulted in numerous outbreaks globally, affecting regions including Africa, Americas, Asia, Europe and the Caribbean. These viruses are transmitted to humans by the bite of infected mosquitoes.

View Article and Find Full Text PDF

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

VLDLR mediates Semliki Forest virus neuroinvasion through the blood-cerebrospinal fluid barrier.

Nat Commun

December 2024

Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.

Semliki Forest virus (SFV) is a neuropathogenic alphavirus which is of interest both as a model neurotropic alphavirus and as an oncolytic virus with proven potency in preclinical cancer models. In laboratory mice, peripherally administered SFV infiltrates the central nervous system (CNS) and causes encephalitis of varying severity. The route of SFV CNS entrance is poorly understood but has been considered to occur through the blood-brain barrier.

View Article and Find Full Text PDF

Structural insights into Semiliki forest virus receptor binding modes indicate novel mechanism of virus endocytosis.

PLoS Pathog

December 2024

State Key Laboratory for Animal Disease Control and Prevention & National Data Center for Animal Infectious Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.

The Very Low-Density Lipoprotein Receptor (VLDLR) is an entry receptor for the prototypic alphavirus Semliki Forest Virus (SFV). However, the precise mechanisms underlying the entry of SFV into cells mediated by VLDLR remain unclear. In this study, we found that of the eight class A (LA) repeats of the VLDLR, only LA2, LA3, and LA5 specifically bind to the native SFV virion while synergistically promoting SFV cell attachment and entry.

View Article and Find Full Text PDF

The alphavirus chikungunya virus (CHIKV) is a serious human pathogen that can cause large-scale epidemics characterized by fever and joint pain and often resulting in chronic arthritis. Infection by alphaviruses including CHIKV and the closely related Semliki Forest virus (SFV) can induce the formation of filopodia-like intercellular long extensions (ILEs). ILEs emanate from an infected cell, stably attach to a neighboring cell, and mediate cell-to-cell viral transmission that is resistant to neutralizing antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!