Denervation of skeletal muscle results in dramatic remodeling of the cellular and molecular composition of the muscle connective tissue. This remodeling is concentrated in muscle near neuromuscular junctions and involves the accumulation of interstitial cells and several extracellular matrix molecules. Given the role of extracellular matrix in neurite outgrowth and synaptogenesis, we predict that this remodeling of the junctional connective tissue directly influences the regeneration of the neuromuscular junction. As one step toward understanding the role of this denervation-induced remodeling in synapse formation, we have begun to look for the signals that are involved in initiating the junctional accumulations of interstitial cells and matrix molecules. Here, the role of muscle inactivity as a signal was examined. The distributions of interstitial cells, fibronectin, and tenascin were determined in muscles inactivated by presynaptic blockade of muscle activity with tetrodotoxin. We found that blockade of muscle activity for up to 4 wk produced neither the junctional accumulation of interstitial cells nor the junctional concentrations of tenascin and fibronectin normally present in denervated frog muscle. In contrast, the muscle inactivity induced the extrajunctional appearance of two synapse-specific molecules, the acetylcholine receptor and a muscle fiber antigen, mAb 3B6. These results demonstrate that the remodeling of the junctional connective tissue in response to nerve injury is a unique response of muscle to denervation in that it is initiated by a mechanism that is independent of muscle activity. Thus connective tissue remodeling in denervated skeletal muscle may be induced by signals released from or associated with the nerve other than the evoked release of neurotransmitter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120266 | PMC |
http://dx.doi.org/10.1083/jcb.127.5.1435 | DOI Listing |
Background: The adjunctive use of connective tissue grafts (CTGs) in the periodontal regeneration of intrabony defects has been proposed to prevent or limit postoperative gingival recession. However, there is limited evidence regarding the long-term clinical performance of this approach.
Methods: This article presents the five-year follow-up outcomes of a combination therapy using CTG, bone substitutes, and biologics for the treatment of deep intrabony defects associated with gingival recession.
Curr Osteoporos Rep
January 2025
Department of Immunology, Tufts University, Boston, MA, 02111, USA.
Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.
Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.
Aging Clin Exp Res
January 2025
Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China.
Objective: This study aims to analyze adverse drug events (ADE) related to romosozumab from the second quarter of 2019 to the third quarter of 2023 from FAERS database.
Methods: The ADE data related to romosozumab from 2019 Q2 to 2023 Q3 were collected. After data normalization, four signal strength quantification algorithms were used: ROR (Reporting Odds Ratios), PRR (Proportional Reporting Ratios), BCPNN (Bayesian Confidence Propagation Neural Network), and EBGM (Empirical Bayesian Geometric Mean).
Clin Exp Rheumatol
January 2025
Department of Organ Transplantation, and Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, Guangzhou, China.
Objectives: The progressive decline in interstitial lung disease associated with non-scleroderma connective tissue disease (ILD-NSCTD) is linked to poor prognosis and frequently results in respiratory failure. Lung transplantation (LTx) offers a viable treatment option, yet its outcomes in ILD-NSCTD remain contentious, particularly across different subtypes.
Methods: This retrospective cohort study included patients with idiopathic pulmonary fibrosis (IPF) (n=11,610) and ILD-NSCTD (n=610) listed in the United Network for Organ Sharing (UNOS) database who underwent lung transplantation between May 5, 2005, and December 31, 2022.
Curr Obes Rep
January 2025
Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.
Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.
Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!