Fetal rat lung epithelial cells were isolated on gestational day 17 (term is 22), separated from fibroblasts, and cultured up to 6 days in a serum-free medium on a basement membrane matrix. Surfactant protein (SP) A, barely detectable by immunostaining at the beginning of the culture, considerably increased in cells and subsequently in the lumen of the epithelial cell clusters. SP-A mRNA, already detectable at culture initiation, progressively increased. By contrast, SP-B and its mRNA appeared after 2-3 days. SP-C mRNA appeared only after 4 days of culture. Cells cultured 6 days had a phospholipid composition similar to that of freshly isolated adult rat type II cells. The enhancement of lipid synthesis between the first and the sixth culture days, reported earlier to occur in these cells, was found to be accompanied by a two- to fivefold increase in amount of mRNAs of lipogenic enzymes and choline phosphate cytidylyltransferase. In conclusion, alveolar epithelial type II cells appear to be capable of full differentiation in vitro, and components of the surfactant system are all regulated developmentally at a pretranslational level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.1994.267.4.L375 | DOI Listing |
J Tissue Eng
January 2025
Core Facility Tissue Engineering, Institute of Chemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
Advanced in vitro models are crucial for studying human airway biology. Our objective was the development and optimization of 3D in vitro models representing diverse airway regions, including deep lung alveolar region. This initiative was aimed at assessing the influence of selective scaffold materials on distinct airway co-culture models.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
Overactive immune responses and lung cell damage exacerbate acute lung injury (ALI). Luteolin, a flavonoid commonly found in traditional herbs, shows potential as an anti-ALI agent in pharmacological and clinical research, although its biological mechanism is not fully understood. This study aims to investigate whether luteolin can ameliorate ALI through its immune-modulatory and antinecroptosis mechanisms.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2025
Department of Bioengineering, University of Colorado, Denver | Anschutz Medical Campus, Aurora, CO, USA.
Lung progenitor (LP) cells identified by the expression of transcription factor NK2 homeobox 1 (NKX2.1) are essential for development of all lung epithelial cell types and hold tremendous potential for pulmonary research and translational regenerative medicine applications. Here we present engineered hydrogels as a promising alternative to the naturally derived materials that are often used to differentiate human induced pluripotent stem cells (iPSCs) into LP cells.
View Article and Find Full Text PDFMucosal Immunol
January 2025
Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh Medical Center Pittsburgh PA USA; Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine New Haven CT USA. Electronic address:
Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA, which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India. Electronic address:
Purpose: The purpose of this study was to investigate the therapeutic potential of Poly (ADP-ribose) polymerase 1 (PARP1) inhibition combined with microRNA miR-135a-5p overexpression in sepsis-induced acute lung injury (ALI). Specifically, we aimed to elucidate combinatorial therapeutic potential of PARP1 inhibition in mitigating oxidative stress and inflammation across different models, simultaneously miR-135a-5p overexpression promoting regeneration through the SMAD5/Nanog axis.
Method: We used C57BL/6 mice to create Cecal Ligation Puncture (CLP) model of Sepsis-induced Acute Lung Injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!