The mutagenicity of the antitumor agent ICR-170 (2-methoxy-6-chloro-9-[(ethyl-2-chloroethyl)amino propylamino] acridine dihydrochloride) in the adenine-3 (ad-3) region was studied with a two-component heterokaryon (H-12) of Neurospora crassa. The objective was to characterize the genetic damage produced by this acridine nitrogen mustard derivative to determine in a lower eukaryotic organism the basis for its potent activity against ascites tumors in mice. As in higher eukaryotes, specific-locus mutations in the ad-3 region of strain H-12 result from gene/point mutations, multiple-locus mutations, and multilocus deletion mutations at the closely linked ad-3A and ad-3B loci. Six different treatments of conidial suspensions of H-12 with ICR-170 were used to obtain dose-response curves for inactivation of conidia as well as the overall induction of ad-3 forward mutations using a direct method based on pigment accumulation rather than a requirement for adenine. These experiments demonstrated that: (1) the slope of the dose-response curve for ICR-170-induced specific-locus mutations in the ad-3 region was 1.97 +/- 0.02, and (2) ICR-170 is a potent mutagen (maximum forward-mutation frequency between 1000 and 10,000 ad-3 mutations per 10(6) survivors) for the induction of specific-locus mutations in the ad-3 region. Both biochemical and classical genetic tests were used to characterize the ICR-170-induced ad-3 mutations from each of the six treatments to distinguish the different genotypic classes and subclasses. The overall data base demonstrates that ICR-170-induced ad-3 mutations result exclusively from gene/point mutations at the ad-3A and ad-3B loci and not multilocus deletion mutations. In addition, the frequency of multiple-locus ad-3 mutations resulting from gene/point mutations at the ad-3A and ad-3B loci with a separate site of recessive lethal damage elsewhere in the genome increases as a function of dose. However, an exceptionally high frequency of multiple-locus ad-3 mutations consisting of gene/point mutations at the ad-3A and ad-3B loci with a separate site of closely linked recessive lethal damage was found at all doses. Comparison of the dose-response curves for the major classes and subclasses of ICR-170-induced ad-3 mutations demonstrates that the gene/point ad-3 mutations and multiple-locus ad-3 mutations with a separate site of recessive lethal damage elsewhere in the genome have different induction kinetics.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0027-5107(94)90005-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!