Several studies have previously demonstrated enrichment in primitive progenitor cells in subfractions of CD34+ bone marrow (BM) cells not expressing CD38 or HLA-DR (DR) antigens. However, no studies have directly compared these two cell populations with regard to their content of primitive and more committed progenitor cells. Flow cytometric analysis of immunomagnetic isolated CD34+ cells demonstrated little overlap between CD34+CD38- and CD34+DR- progenitor subpopulations in that only 12% to 14% of total CD34+DR- and CD34+CD38- cells were double negative (CD34+CD38-DR-). Although the number of committed myeloid progenitor cells (colony-forming units granulocyte-macrophage) was reduced in both subpopulations, only CD34+CD38- cells were significantly depleted in committed erythroid progenitor cells (burst-forming units-erythroid). In single-cell assay, CD34+CD38- cells showed consistently poorer response to single as opposed to multiple hematopoietic growth factors as compared with unfractionated CD34+ cells, indicating that the CD34+CD38- subset is relatively enriched in primitive hematopoietic progenitor cells. Furthermore, CD34+CD38- and CD34+DR- cells, respectively, formed 3.2-fold and 1.6-fold more high proliferative potential colony-forming cell (HPP-CFC) colonies than did unfractionated CD34+ cells. Finally, CD34+CD38-DR- cells were depleted in HPP-CFCs as compared with CD34+CD38+DR+ cells. The results of the present study suggest that both the CD38- and DR- subfractions of CD34+ bone marrow cells are enriched in primitive hematopoietic progenitor cells, with the CD34+CD38- subpopulation being more highly enriched than CD34+DR- cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

progenitor cells
24
cells
19
subfractions cd34+
12
cd34+ bone
12
bone marrow
12
marrow cells
12
cd34+ cells
12
cd34+cd38- cells
12
cd38- dr-
8
dr- subfractions
8

Similar Publications

EZH2 inhibition induces pyroptosis via RHA-mediated S100A9 overexpression in myelodysplastic syndromes.

Exp Hematol Oncol

January 2025

Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.

Myelodysplastic Syndromes (MDS) represent a group of heterogeneous myeloid clonal diseases derived from aberrant hematopoietic stem/progenitor cells. Enhancer of zeste homolog 2 (EZH2) is an important regulator in gene expression through methyltransferase-dependent or methyltransferase-independent mechanisms. Herein, we found EZH2 inhibition led to MDS cell pyroptosis through RNA Helicase A (RHA) down-regulation induced overexpression of S100A9, a key regulator of inflammasome activation and pyroptosis.

View Article and Find Full Text PDF

The generation of retinal models from human induced pluripotent stem cells holds significant potential for advancing our understanding of retinal development, neurodegeneration, and the in vitro modeling of neurodegenerative disorders. The retina, as an accessible part of the central nervous system, offers a unique window into these processes, making it invaluable for both study and early diagnosis. This study investigates the impact of the Frontotemporal Dementia-linked IVS 10 + 16 MAPT mutation on retinal development and function using 2D and 3D retinal models derived from human induced pluripotent stem cells.

View Article and Find Full Text PDF

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

Introduction: Bone marrow-derived mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) are widely used for therapeutic purposes in preclinical studies. However, their utility in treating diabetes-associated atherosclerosis remains largely unexplored. Here, we aimed to characterize BMSC-EV-mediated regulation of autophagy and macrophage polarization.

View Article and Find Full Text PDF

Mechanistic insights and approaches for beta cell regeneration.

Nat Chem Biol

January 2025

Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden.

Diabetes is characterized by variable loss of insulin-producing beta cells, and new regenerative approaches to increasing the functional beta cell mass of patients hold promise for reversing disease progression. In this Review, we summarize recent chemical biology breakthroughs advancing our knowledge of beta cell regeneration. We present current chemical-based tools, sensors and mechanistic insights into pathways that can be targeted to enhance beta cell regeneration in model organisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!