Scanning tunnelling microscopy was used to image biological molecules including supercoiled deoxyribonacetic acid and specific retrovirus enzymes, the reverse transcriptases of the avian myeloblastosis virus, the moloney murine leukaemia virus and the human immunodeficiency virus. Measurements were carried out on graphite and Group VI transition metal dichalcogenide layered crystals. Images obtained with graphite could not be unequivocally interpreted and attachment appears to occur solely at surface defect sites. The layered crystal MoTe2 shows different imaging properties. The bimolecules are clearly visible, distributed over the semiconductor surface, and the molecular shapes and dimensions show good correlation with structure predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/an9941900727DOI Listing

Publication Analysis

Top Keywords

biological molecules
8
scanning tunnelling
8
tunnelling microscopy
8
molybdenum telluride
4
telluride substrate
4
substrate imaging
4
imaging biological
4
molecules scanning
4
microscopy scanning
4
microscopy image
4

Similar Publications

Pan-neurofascin autoimmune nodoparanodopathy: A case report and literature review.

Medicine (Baltimore)

January 2025

Department of Neurology (Nerve-Muscle Unit), Reference Center for Neuromuscular Diseases "AOC," ALS Reference Center, University Hospitals of Bordeaux (Pellegrin Hospital), University of Bordeaux, Bordeaux, France.

Rationale: Locked-in syndrome (and its variant, completely locked-in state) generally has a high mortality rate in the acute setting; however, when induced by conditions such as acute inflammatory polyradiculoneuropathy, it may well be curable such that an attempt at cure should be systematically sought by clinicians.

Patient Concerns: A 52-year-old man presented with acute tetraparesia and areflexia, initially diagnosed as Guillain-Barré syndrome. Despite appropriate treatment, his condition deteriorated, evolving into a completely locked-in state.

View Article and Find Full Text PDF

Understanding chromatin organization requires integrating measurements of genome connectivity and physical structure. It is well established that cohesin is essential for TAD and loop connectivity features in Hi-C, but the corresponding change in physical structure has not been studied using electron microscopy. Pairing chromatin scanning transmission electron tomography with multiomic analysis and single-molecule localization microscopy, we study the role of cohesin in regulating the conformationally defined chromatin nanoscopic packing domains.

View Article and Find Full Text PDF

Leveraging Structural and Computational Biology for Molecular Glue Discovery.

J Med Chem

January 2025

Experimental Drug Development Centre, Chromos, Agency for Science, Technology and Research, 10 Biopolis Road, #05-01, Singapore 138670.

The discovery of molecular glues has made significant strides, unlocking new avenues for targeted protein degradation as a therapeutic strategy, thereby expanding the scope of drug discovery into territories previously considered undruggable. Pioneering molecules like thalidomide and its derivatives have paved the way for the development of small molecules that can induce specific protein degradation by hijacking the cellular ubiquitin-proteasome system. Recent advancements have focused on expanding the range of E3 ligases and target proteins that can be modulated by molecular glues.

View Article and Find Full Text PDF

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Review on the o-aminoaniline Moiety in Peptide and Protein Chemistry.

Chembiochem

January 2025

University of Wisconsin-Madison, Pharmacy, 777 Highland Ave, 53705, Madison, UNITED STATES OF AMERICA.

Peptides and proteins are important functional biomolecules both inside and outside of living organisms. The ability to prepare various types of functionalized peptides and proteins is essential for understanding fundamental biological processes, such as protein folding and post-translational modifications (PTMs), and for developing new therapeutics for many diseases, such as cancers and neurodegenerative diseases. The o-aminoaniline moiety was first proposed for activation to a thioester precursor and used for native chemical ligation to prepare large peptides and proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!