A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cystic fibrosis transmembrane conductance regulator mutations that disrupt nucleotide binding. | LitMetric

Increasing evidence suggests heterogeneity in the molecular pathogenesis of cystic fibrosis (CF). Mutations such as deletion of phenylalanine at position 508 (delta F508) within the cystic fibrosis transmembrane conductance regulator (CFTR), for example, appear to cause disease by abrogating normal biosynthetic processing, a mechanism which results in retention and degradation of the mutant protein within the endoplasmic reticulum. Other mutations, such as the relatively common glycine-->aspartic acid replacement at CFTR position 551 (G551D) appear to be normally processed, and therefore must cause disease through some other mechanism. Because delta F508 and G551D both occur within a predicted nucleotide binding domain (NBD) of the CFTR, we tested the influence of these mutations on nucleotide binding by the protein. We found that G551D and the corresponding mutation in the CFTR second nucleotide binding domain, G1349D, led to decreased nucleotide binding by CFTR NBDs, while the delta F508 mutation did not alter nucleotide binding. These results implicate defective ATP binding as contributing to the pathogenic mechanism of a relatively common mutation leading to CF, and suggest that structural integrity of a highly conserved region present in over 30 prokaryotic and eukaryotic nucleotide binding domains may be critical for normal nucleotide binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC296301PMC
http://dx.doi.org/10.1172/JCI117311DOI Listing

Publication Analysis

Top Keywords

nucleotide binding
32
cystic fibrosis
12
delta f508
12
binding
9
fibrosis transmembrane
8
transmembrane conductance
8
conductance regulator
8
nucleotide
8
binding domain
8
cftr
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!