Purpose: To evaluate the importance of the position of the halogen atom in iodinated DNA-binding bibenzimidazoles, with respect to sensitization of UV-A-induced DNA breakage.
Methods And Materials: Three analogues of iodoHoechst 33258, denoted ortho-, meta- and paraiodoHoechst, according to the site of iodine substitution, were synthesized. Plasmid DNA (pBR322) was used to assay UV-A-induced DNA single-strand breaks (ssbs). The location of the sites of strand breakage was determined by DNA sequencing gel analysis, using a 32P-endlabelled oligoDNA with a single binding site for the ligands.
Results: A clear trend in decreasing activity of sensitization of UV-induced DNA ssbs was established: ortho- > meta-, para- > iodoHoechst 33258. The sequencing gel studies showed that orthoiodoHoechst was distinct from the other three compounds, with respect to the sites of DNA strand breakage and the chemistry of the cleavage reaction.
Conclusion: The position of iodine substitution in iodinated bibenzimidazoles determines the location of the carbon-centered radical on the ligand in the minor groove of DNA. DNA strand cleavage is mediated by abstraction of a nearby deoxyribosyl H-atom. Hence, the position of the radical species determines: which deoxyribosyl group is attacked (i.e., site of cleavage relative to the ligand binding site); which H-atom is abstracted, more specifically which of the five deoxyribosyl carbons is involved (i.e., the chemistry of the cleavage reaction), and the stereochemistry of the transition state for the H-atom abstraction (and hence the efficiency or extent of strand breakage). The ortho-compound represents the best example to date of iodinated DNA ligands designed as potential radiation sensitizers, as an extension of the well-established sensitization by halogenated DNA precursors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0360-3016(94)90454-5 | DOI Listing |
Mol Plant
January 2025
State Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Beijing Life Science Academy, Beijing 102299, China. Electronic address:
It has been hypothesized that DNA damage has the potential to induce DNA hypermethylation, contributing to carcinogenesis in mammals. However, there is no sufficient evidence to support that DNA damage can cause genome-wide DNA hypermethylation. Here, we demonstrated that DNA single-strand breaks with 3'-blocked ends (DNA 3'-blocks) can not only reinforce DNA methylation at normally methylated loci but also can induce DNA methylation at normally nonmethylated loci in plants.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Reproductive Medicine Center, Zhuhai Maternal and Child Health Care Hospital, 543 Ningxi Road, Zhuhai, 519000, China.
Purpose: Prior sperm DNA fragmentation index (DFI) thresholds for diagnosing male infertility and predicting assisted reproduction technology (ART) outcomes fluctuated between 15 and 30%, with no agreed standard. This study aimed to evaluate the impact of the sperm DFI on early embryonic development during ART treatments and establish appropriate DFI cut-off values.
Methods: Retrospectively analyzed 913 couple's ART cycles from 2021 to 2022, encompassing 1,476 IVF and 295 ICSI cycles, following strict criteria.
Cell Commun Signal
January 2025
Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.
View Article and Find Full Text PDFClin Epigenetics
January 2025
Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Gastrointestinal Surgery I Section, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Background: Gastric cancer peritoneal metastasis lacks effective predictive indices. This article retrospectively explored predictive values of DNA ploidy, stroma, and nucleotyping in gastric cancer peritoneal metastasis.
Methods: A comprehensive analysis was conducted on specimens obtained from 80 gastric cancer patients who underwent gastric resection at the Department of Gastrointestinal Surgery of Wuhan University Renmin Hospital.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!