Neutralization of a chimeric human immunodeficiency virus (HIV) type 1, containing the V3 loop of the MN isolate substituted within the HXB2 envelope, was enhanced up to 20-fold compared with the HXB2 or MN parental isolates by human HIV-positive sera. MN V3 loop-specific monoclonal antibodies were better able to recognize the chimeric virus compared with MN, staining a greater percentage of infected cells and exhibiting slight increases in relative affinity with a concomitant increase in neutralization titer. Competition analysis revealed that enhanced neutralization by human HIV-positive sera of the chimera was attributable in some cases to better reactivity with the linear V3 loop epitope but in others to conformational loop epitopes or previously cryptic or poorly recognized epitopes outside the loop region. Mice primed with a vaccinia virus-chimeric envelope recombinant and boosted with gp160 developed a spectrum of antibodies different from that of mice similarly immunized with HXB2 or MN recombinants or that of naturally infected humans. The chimeric envelope elicited antibodies with enhanced binding to the native MN V3 loop; however, the sites seen by the BALB/c mice were not neutralizing epitopes. Nevertheless, similar to the observations made with use of human sera, the chimeric virus was more readily neutralized by all of the immune mouse sera, an effect apparently mediated by non-V3 loop epitopes. These studies illustrate that not only the V3 loop sequence and conformation but also its context within the viral envelope influence neutralization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC236848 | PMC |
http://dx.doi.org/10.1128/JVI.68.6.3459-3466.1994 | DOI Listing |
Virol J
January 2025
Virology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University (SAU), New Delhi, 110068, India.
Maturation inhibitors (MIs) block HIV-1 maturation by preventing the cleavage of the capsid protein and spacer peptide 1 (CA-SP1). Bevirimat (BVM), a first-in-class MI, displayed sub-optimal efficacy in clinical trials due to presence of SP1:V7A polymorphism in the Gag protein.This polymorphism is inherently present in HIV-1 subtype C and conferred resistance to BVM.
View Article and Find Full Text PDFBMC Nephrol
January 2025
Department of Internal Medicine, Naguru Referral Hospital, Kampala, Uganda.
Background: Limited studies have explored the relationship between estimated Glomerular Filtration Rate(eGFR) and in-hospital mortality(IHM) in low-income sub-Saharan African countries. This study aimed to explores this association, offering insights into its impact in resource-limited settings.
Methods And Results: We retrospectively included 226 patients(age 45.
Background: The proportion of people living with HIV (PLHIV) in Guangxi who are men who have sex with men (MSM) increased rapidly to nearly 10% in 2023; notably, over 95% of this particular population is currently receiving antiretroviral therapy (ART). This study aimed to describe the survival of MSM PLHIV, depict the characteristics and trends of changes in CD4 T cell counts, CD4/CD8 T cell ratio, and viral load, and explore immunological indicators that may be related to mortality during different stages of treatment.
Methods: Immunological indicators of MSM PLHIV receiving ART were extracted and categorized into baseline, mid-treatment, and last values.
J Int AIDS Soc
February 2025
AP-HP, Hôpital Bichat Claude Bernard, Service de Virologie, INSERM, IAME, Paris, France.
Introduction: Molecular surveillance is an important tool for detecting chains of transmission and controlling the HIV epidemic. This can also improve our knowledge of molecular and epidemiological factors for the optimization of prevention. Our objective was to illustrate this by studying the molecular and epidemiological evolution of the cluster including the new circulating recombinant form (CRF) 94_cpx of HIV-1, detected in 2017 and targeted by preventive actions in 2018.
View Article and Find Full Text PDFSci Rep
January 2025
Vincent Center for Reproductive Biology, Massachusetts General Hospital, 55 Fruit St, Their 9, Boston, MA, 02114, USA.
Bacterial vaginosis (BV), characterized by an imbalance in the vaginal microbiota, is a prevalent condition among women of reproductive age and a risk factor for human immunodeficiency virus, sexually transmitted infections, and preterm birth. BV is generally considered to induce mucosal inflammation, but the specific pathways and cell types involved are not well characterized. This prospective study aimed to assess associations between microbial changes and mucosal immune responses in BV patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!