This study examines the mechanism of TSH action on the cAMP-dependent protein kinases (PKA) by measuring the catalytic activity of the two PKA isozymes (PKA I and PKA II) and their capacity to bind cAMP to the regulatory subunits (RI and RII) in thyroid cell cultures exposed for two days to different doses of TSH. In TSH-treated cell cultures a selective down regulation (up to 60%) of the catalytic activity was found; the PKA I was down regulated at lower TSH doses (0.1 mU/ml and even 0.05 mU/ml) than was the PKA II (1.0 mU/ml TSH). At the dose of 1.0 mU/ml the loss of the catalytic activity in PKA I and PKA II was respectively 60% and 40%. No free catalytic activity was found either in control or in TSH-treated cells. Binding of cAMP to regulatory subunits (R) measured under exchange conditions at 37 degrees C, showed that no change in total regulatory subunit protein content occurs in TSH-treated cells. Binding of cAMP to R subunits at 4 degrees C (when only free cAMP binding sites are measured) revealed an important endogenous occupancy of cAMP binding sites of RI and RII isoreceptors under basal conditions (40%) and a significantly increased occupancy after exposure of cells to TSH (60%). Pools of regulatory subunits with more than 50% of sites occupied, which were devoid of enzyme activity, were found both, in control and TSH-exposed cells. They were identified as RI subunits which represented a mixed population of native and partly degraded molecules.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0303-7207(94)90152-x | DOI Listing |
Sci Rep
January 2025
Population Health Sciences, University of Bristol, Bristol, UK.
Multiple myeloma (MM) is an incurable blood cancer with unclear aetiology. Proteomics is a valuable tool in exploring mechanisms of disease. We investigated the causal relationship between circulating proteins and MM risk, using two of the largest cohorts with proteomics data to-date.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, H-4032, Debrecen, Hungary. Electronic address:
Brown and beige adipocytes express uncoupling protein-1 (UCP1), which is located in the inner mitochondrial membrane and facilitates the dissipation of excess energy as heat. The activation of thermogenic adipocytes is a potential therapeutic target for treating type 2 diabetes mellitus, obesity, and related co-morbidities. Therefore, identifying novel approaches to stimulate the function of these adipocytes is crucial for advancing therapeutic strategies.
View Article and Find Full Text PDFPLoS One
January 2025
Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India.
Theor Appl Genet
January 2025
Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA.
Loss-of-function mutations induced by CRISPR-Cas9 in the TaGS3 gene homoeologs show non-additive dosage-dependent effects on grain size and weight and have potential utility for increasing grain yield in wheat. The grain size in cereals is one of the component traits contributing to yield. Previous studies showed that loss-of-function (LOF) mutations in GS3, encoding Gγ subunit of the multimeric G protein complex, increase grain size and weight in rice.
View Article and Find Full Text PDFGenes Dev
January 2025
Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA;
The Rbfox proteins regulate alternative pre-mRNA splicing by binding to the RNA element GCAUG. In the nucleus, most of Rbfox is bound to the large assembly of splicing regulators (LASR), a complex of RNA-binding proteins that recognize additional RNA motifs. However, it remains unclear how the different subunits of the Rbfox/LASR complex act together to bind RNA and regulate splicing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!