We have studied interactions of tenascin with two chondroitin sulfate proteoglycans, neurocan and phosphacan. Neurocan is a multi-domain proteoglycan with a 136-kDa core protein that is synthesized by neurons and binds to hyaluronic acid, whereas the 173-kDa core protein of phosphacan, which is synthesized by glia, represents an extracellular variant of the receptor-type protein tyrosine phosphatase RPTP zeta/beta. Keratan sulfate-containing glycoforms of phosphacan (designated phosphacan-KS) are also present in brain. Immunocytochemical studies of early postnatal rat cerebellum demonstrated that the localization of neurocan, phosphacan, and phosphacan-KS all overlap extensively with that of tenascin, an extracellular matrix protein that modulates cell adhesion and migration. Binding studies using purified proteins covalently attached to fluorescent microbeads demonstrated that proteoglycan-coated beads co-aggregated with differently fluorescing beads coated with tenascin. The co-aggregation was specifically inhibited by Fab' fragments of antibodies against tenascin or the proteoglycans and by soluble neurocan, phosphacan, and tenascin. A solid phase radioligand binding assay confirmed that neurocan, phosphacan, and phosphacan-KS bind to tenascin but not to laminin and fibronectin. Chondroitinase treatment of the proteoglycans or addition of free chondroitin sulfate had no significant effect, indicating that the binding activity is mediated largely via the core glycoproteins. Scatchard analysis demonstrated high affinity binding of 125I-phosphacan, phosphacan-KS, and neurocan to a single site in tenascin, and neurocan and various glycoforms of phosphacan all inhibited binding of 125I-phosphacan to tenascin. In studies of cell adhesion to proteins adsorbed to Petri dishes, phosphacan inhibited adhesion of C6 glioma cells to tenascin whereas neurocan had no effect. Our results suggest that tenascin binds phosphacan and neurocan in vivo and that interactions between chondroitin sulfate proteoglycans and tenascin may play important roles in nervous tissue histogenesis, possibly by modulating signal transduction across the plasma membrane.

Download full-text PDF

Source

Publication Analysis

Top Keywords

neurocan phosphacan
20
chondroitin sulfate
16
cell adhesion
12
sulfate proteoglycans
12
tenascin
11
neurocan
10
phosphacan
10
interactions tenascin
8
nervous tissue
8
phosphacan neurocan
8

Similar Publications

[Effect of Naotaifang on microglial polarization and glial scar following cerebral ischemia reperfusion injury].

Zhongguo Zhong Yao Za Zhi

February 2024

Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases,College of Integrated Traditional and Western Medicine, Hunan University of Chinese Medicine Changsha 410208,China.

Article Synopsis
  • This study examines how Naotaifang (NTF) influences proteins linked to microglial polarization and glial scar formation in rats with cerebral ischemia reperfusion injury (CIRI).
  • The research involved creating a rat CIRI model and dividing 48 rats into different treatment groups to evaluate the effects of NTF over 7 and 14 days.
  • Results indicated that NTF treatment improved cognitive function and reduced brain damage and anxiety levels compared to the untreated model groups, showing potential benefits for recovery from brain injuries.
View Article and Find Full Text PDF

Chemotherapy with temozolomide (TMZ) is an essential part of anticancer therapy used for malignant tumors (mainly melanoma and glioblastoma); however, the long-term effects on patient health and life quality are not fully investigated. Considering that tumors often occur in elderly patients, the present study was conducted on long-term (4 months) treatment of adult Wistar rats (9 months old, n=40) with TMZ and/or dexamethasone (DXM) to investigate potential behavioral impairments or morphological and molecular changes in their brain tissues. According to the elevated plus maze test, long-term use of TMZ affected the anxiety of the adult Wistar rats, although no significant deterioration of brain morphology or cellular composition of the brain tissue was revealed.

View Article and Find Full Text PDF

Major depressive disorder (MDD) and chronic unpredictable stress (CUS) in animals feature comparable cellular and molecular disturbances that involve neurons and glial cells in gray and white matter (WM) in prefrontal brain areas. These same areas demonstrate disturbed connectivity with other brain regions in MDD and stress-related disorders. Functional connectivity ultimately depends on signal propagation along WM myelinated axons, and thus on the integrity of nodes of Ranvier (NRs) and their environment.

View Article and Find Full Text PDF

Identification of Neurocan and Phosphacan as Early Biomarkers for Open Neural Tube Defects.

Cells

April 2023

Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA.

Open neural tube defects (NTDs) such as myelomeningocele (MMC) are debilitating and the most common congenital defects of the central nervous system. Despite their apparent clinical importance, the existing early prenatal diagnostic options for these defects remain limited. Using a well-accepted retinoic-acid-induced model of MMC established in fetal rats, we discovered that neurocan and phosphacan, the secreted chondroitin sulfate proteoglycans of the developing nervous system, are released into the amniotic fluid (AF) of fetal rats displaying spinal cord defects.

View Article and Find Full Text PDF

Thoracic spinal cord injury (SCI) results in urinary dysfunction, which majorly affects the quality of life of SCI patients. Abnormal sprouting of lumbosacral bladder afferents plays a crucial role in this condition. Underlying mechanisms may include changes in expression of regulators of axonal growth, including chondroitin sulphate proteoglycans (CSPGs), myelin-associated inhibitors (MAIs) and repulsive guidance molecules, known to be upregulated at the injury site post SCI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!