AI Article Synopsis

Article Abstract

A Chinese hamster ovary (CHO) cell line stably expressing a recombinant human D4 dopamine receptor made from a synthetic gene has been used to determine potential D4-mediated signaling events. We designed and synthesized a modified gene coding for a human D4 receptor with reduced G + C content but unaltered encoded amino acids. Stable expression of this gene was obtained in two cell lines, inducible expression in CHO lacI cells and constitutive expression in HEK293 cells. In CHO lacI cells induced to express D4 receptors but not in uninduced cells, dopamine and quinpirole inhibit forskolin-stimulated cAMP accumulation and potentiate ATP-stimulated [3H]arachidonic acid release through a mechanism that requires protein kinase C but is unaffected by membrane-soluble cAMP analogs. In addition, D4 receptor activation causes an increase in the rate of extracellular acidification measured by microphysiometry. This response is unaffected by protein kinase C down-regulation but is inhibited by removal of extracellular sodium and inhibitors of NaH-1 exchange, suggesting the involvement of a Na+/H+ exchanger. All responses are blocked by clozapine and are sensitive to pertussis toxin. D4 receptors, like other G(i)/G(o)-linked receptors, mediate multiple signaling events, and the pathways activated are similar to those used by D2 and D3 receptors expressed in similar cells.

Download full-text PDF

Source

Publication Analysis

Top Keywords

signaling events
12
chinese hamster
8
hamster ovary
8
cho laci
8
laci cells
8
protein kinase
8
cells
6
dopamine receptor-mediated
4
receptor-mediated signaling
4
events determined
4

Similar Publications

Gadopiclenol Enables Reduced Gadolinium Dose While Maintaining Quality of Pulmonary Arterial Enhancement for Pulmonary MRA: An Opportunity for Improved Safety and Sustainability.

Invest Radiol

January 2025

From the Departments of Radiology (J.F.H., S.Y.C., J.-P.G., J.S., P.N., S.B.R., T.M.G.), Biomedical Engineering (S.B.R., T.M.G.), Medical Physics (S.Y.C., S.B.R., T.M.G.), Medicine (S.B.R.), and Emergency Medicine (S.B.R.), University of Wisconsin-Madison, WI; and Department of Diagnostic and Interventional Radiology (J.F.H., J.-P.G.), University Hospital Würzburg, Würzburg, Germany.

Rationale And Objectives: Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol.

View Article and Find Full Text PDF

In recent decades, it has become increasingly clear that mammalian gametes and early embryos are highly sensitive to metabolic substrates. With advances in single-cell sequencing, metabolomics, and bioinformatics, we now recognize that metabolic pathways not only meet cellular energy demands but also play a critical role in cell proliferation, differentiation, and fate determination. Investigating metabolic processes during oocyte maturation and early embryonic development is thus essential to advancing reproductive medicine and embryology.

View Article and Find Full Text PDF

Measuring the effects of motion corruption in fetal fMRI.

Hum Brain Mapp

February 2025

Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.

Irregular and unpredictable fetal movement is the most common cause of artifacts in in utero functional magnetic resonance imaging (fMRI), affecting analysis and limiting our understanding of early functional brain development. The accurate detection of corrupted functional connectivity (FC) resulting from motion artifacts or preprocessing, instead of neural activity, is a prerequisite for reliable and valid analysis of FC and early brain development. Approaches to address this problem in adult data are of limited utility in fetal fMRI.

View Article and Find Full Text PDF

Background And Aims: Non-Alcoholic Steatohepatitis (NASH), a severe form of Non-Alcoholic Fatty Liver Disease (NAFLD), is characterized by inflammation and fibrosis in the liver, often progressing to cirrhosis and hepatocellular carcinoma. Despite its rising prevalence and significant disease burden, effective pharmacological treatments have been limited to lifestyle modifications and surgical interventions. Recently, resmetirom, a thyroid hormone receptor-β agonist, received FDA approval for treating NASH, offering new hope to patients.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the risk of tumor formation with infliximab or azathioprine monotherapy versus their combination, using the FDA Adverse Event Reporting System (FAERS) database.

Methods: Data were extracted from the FAERS database for patients treated with infliximab, azathioprine, and combination therapy from Q1 2004 to Q2 2024. Signal mining employed methods such as Reported Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Multiple Gamma-Poisson Scaling Assessment (MGPSA) and Bayesian Confidence Interval Progressive Neural Network (BCPNN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!