Cl- conductance of the apical membrane of airway epithelial cells has properties of a passive diffusion mechanism but is decreased by inhibition of oxidative metabolism. Recent reports that cAMP-dependent Cl- conductance also requires ATP at the intracellular domains of the cystic fibrosis transmembrane conductance regulator (CFTR) suggests that ATP concentration could mediate metabolic regulation of Cl- conductance. However, metabolic inhibitors affect processes other than ATP free energy levels, including notably the metabolic pathways that set the redox potential of pyridine nucleotides within the cell. We have investigated the possibility that CFTR-mediated Cl- conductance is affected by the ratio of oxidized to reduced intracellular pyridine nucleotides. CFTR was expressed in airway and heterologous cells and studied under whole cell voltage clamp conditions, which permitted the intracellular NAD(P)+/NAD(P)H ratio to be varied independently of ATP concentration. In three cell types expressing CFTR, whole cell dialysis with reduced pyridine nucleotides inhibited activation of Cl- currents by forskolin and 8-(4-chlorophenylthio)-cAMP (CPT-cAMP), whereas dialysis with oxidized pyridines increased both basal and stimulated CFTR-mediated Cl- conductance. In cell-attached membrane patches, the open probability of 5-6-picosiemens Cl- channels that had been activated by forskolin and CPT-cAMP was further and reversibly increased by permeant oxidants. Neither swelling-induced whole cell K+ currents in CFTR-expressing cells nor swelling-induced whole cell Cl- currents in multidrug resistance protein-expressing cells were affected by NADPH. Pyridine nucleotide redox potential had little effect on phosphorylation of histone by protein kinase A. We conclude that CFTR Cl- conductance function can be modulated by pyridine nucleotide redox potential. This effect points to the existence of a mechanism or mechanisms by which cytosolic nucleotides other than ATP can affect plasma membrane Cl- conductance and may help explain how a passive ion conductance is linked to cellular energy metabolism.

Download full-text PDF

Source

Publication Analysis

Top Keywords

cl- conductance
32
redox potential
16
pyridine nucleotide
12
nucleotide redox
12
pyridine nucleotides
12
conductance
11
cl-
11
cystic fibrosis
8
fibrosis transmembrane
8
transmembrane conductance
8

Similar Publications

Weighted Echo State Graph Neural Networks Based on Robust and Epitaxial Film Memristors.

Adv Sci (Weinh)

January 2025

College of Physics Science & Technology, School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Hebei University, Baoding, 071002, China.

Hardware system customized toward the demands of graph neural network learning would promote efficiency and strong temporal processing for graph-structured data. However, most amorphous/polycrystalline oxides-based memristors commonly have unstable conductance regulation due to random growth of conductive filaments. And graph neural networks based on robust and epitaxial film memristors can especially improve energy efficiency due to their high endurance and ultra-low power consumption.

View Article and Find Full Text PDF

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes.

View Article and Find Full Text PDF

Patients presenting with suspected acute coronary syndrome (ACS) in the emergency department (ED) require rapid and accurate electrocardiographic (ECG) evaluation. This study aims to assess conventional ECG markers for diagnosing non-ST-elevation ACS (NSTE-ACS) in patients with chest discomfort and right bundle branch block (RBBB). A nested case-control design was employed to compare patients with RBBB admitted to the ED for suspected cardiac ischemia, focusing on those who developed NSTE-ACS versus those who did not.

View Article and Find Full Text PDF

12-year cumulative incidence rate of rare retinal diseases: a nationwide study in Korea.

Eye (Lond)

January 2025

Department of Ophthalmology, Chung-Ang University, College of Medicine, Seoul, South Korea.

Purpose: Understanding the incidence of rare diseases is important in establishing a proper public health care system and setting target diseases in medical research. Herein, we report the 12-year cumulative incidence of seven rare ocular diseases of the retina in South Korea.

Methods: We analysed clinical records of 1,126,250 South Korean population during 2006~2019.

View Article and Find Full Text PDF

Temporal Dynamics of Affective Scene Processing in the Healthy Adult Human Brain.

Neurosci Biobehav Rev

January 2025

Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany. Electronic address:

Understanding how the brain distinguishes emotional from neutral scenes is crucial for advancing brain-computer interfaces, enabling real-time emotion detection for faster, more effective responses, and improving treatments for emotional disorders like depression and anxiety. However, inconsistent research findings have arisen from differences in study settings, such as variations in the time windows, brain regions, and emotion categories examined across studies. This review sought to compile the existing literature on the timing at which the adult brain differentiates basic affective from neutral scenes in less than one second, as previous studies have consistently shown that the brain can begin recognizing emotions within just a few milliseconds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!