The three-dimensional structure of the ligand-binding region of human E-selectin has been determined at 2.0 A resolution. The structure reveals limited contact between the two domains and a coordination of Ca2+ not predicted from other C-type lectins. Structure/function analysis indicates a defined region and specific amino-acid side chains that may be involved in ligand binding. These features of the E-selectin/ligand interaction have important implications for understanding the recruitment of leukocytes to sites of inflammation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/367532a0DOI Listing

Publication Analysis

Top Keywords

e-selectin/ligand interaction
8
insight e-selectin/ligand
4
interaction crystal
4
crystal structure
4
structure mutagenesis
4
mutagenesis lec/egf
4
lec/egf domains
4
domains three-dimensional
4
three-dimensional structure
4
structure ligand-binding
4

Similar Publications

Adoptive T-cell transfer has revolutionized the treatment of hematological malignancies. However, this approach has had very limited success in treating solid tumors, largely due to inadequate infiltration of vascularly administered T cells at tumor sites. The shear-resistant interaction between endothelial E-selectin and its cognate ligand expressed on leukocytes, sialyl Lewis X (sLe), is an essential prerequisite for extravasation of circulating leukocytes.

View Article and Find Full Text PDF

The interaction of acute myeloid leukaemic (AML) blasts with the bone marrow (BM) microenvironment is a major determinant governing disease progression and resistance to treatment. The constitutive expression of E-selectin in the vascular compartment of BM, a key endothelial cell factor, directly mediates chemoresistance via E-selectin ligand/receptors. Despite the success of hypomethylating agent (HMA)-containing regimens to induce remissions in older AML patients, the development of primary or secondary resistance is common.

View Article and Find Full Text PDF

E-selectin, a cytoadhesive glycoprotein, is expressed on venular endothelial cells and mediates leukocyte localization to inflamed endothelium, the first step in inflammatory cell extravasation into tissue. Constitutive marrow endothelial E-selectin expression also supports bone marrow hematopoiesis via NF-κB-mediated signaling. Correspondingly, E-selectin interaction with E-selectin ligand (sialyl Lewis) on acute myeloid leukemia (AML) cells leads to chemotherapy resistance in vivo.

View Article and Find Full Text PDF

One critical step of metastasis formation is the extravasation of circulating tumor cells from the bloodstream. This process requires the dynamic interaction of cell adhesion molecules like E-selectin on endothelial cells with carbohydrate ligands on tumor cells. To characterize these glycans in a comprehensible approach, the rolling, tethering, and firm adhesion of nine human tumor cell lines on human umbilical vein endothelial cells was analyzed using laminar flow adhesion assays.

View Article and Find Full Text PDF

The biology of E-selectin ligands in leukemogenesis.

Adv Cancer Res

February 2023

Department of Translational Medicine & The Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States. Electronic address:

Both the cascade whereby a blood-borne cell enters a tissue and the anchoring of hematopoietic stem/progenitor cells (HSPCs) within bone marrow critically pivots on cell-cell interactions mediated by E-selectin binding to its canonical carbohydrate ligand, the tetrasaccharide termed "sialylated Lewis X" (sLeX). E-selectin, a member of the selectin class of adhesion molecules that is exclusively expressed by vascular endothelium, engages sLeX-bearing glycoconjugates that adorn mature leukocytes and HSPCs, as well as malignant cells, thereby permitting these cells to extravasate into various tissues. E-selectin expression is induced on microvascular endothelial cells within inflammatory loci at all tissues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!