Structural characterization of the FK506 binding protein unfolded in urea and guanidine hydrochloride.

J Mol Biol

Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, IL 60064.

Published: February 1994

Characterizing the structure properties of unfolded proteins is important for understanding the stability and folding of native proteins. However, little structural information is available for the unfolded state. Using recently developed heteronuclear multi-dimensional NMR techniques, the 1H, 13C and 15N chemical shift assignments of the FK506 binding protein (FKBP) unfolded in concentrated urea and guanidine hydrochloride (GuHCl) solutions have been obtained, and the structural properties of unfolded FKBP have been characterized. FKBP displays extensive conformational averaging when unfolded in urea and GuHCl, but defined regions of secondary structure are present. Subtle differences regarding the location and stability of the secondary structures exist between the two solvents. Secondary structure formation in unfolded FKPB was correlated with statistical and thermodynamic predictions of helix formation as well as with the three-dimensional structure of folded FKBP determined by NMR and X-ray crystallography. Residues involved in secondary structures in unfolded FKBP are generally found in the same type of secondary structure in the folded protein. An exception to this was found at the C terminus of FKBP, which forms a different secondary structure in the unfolded and folded states.

Download full-text PDF

Source
http://dx.doi.org/10.1006/jmbi.1994.1173DOI Listing

Publication Analysis

Top Keywords

secondary structure
16
unfolded
9
fk506 binding
8
binding protein
8
unfolded urea
8
urea guanidine
8
guanidine hydrochloride
8
properties unfolded
8
unfolded fkbp
8
secondary structures
8

Similar Publications

RNA structure: implications in viral infections and neurodegenerative diseases.

Adv Biotechnol (Singap)

February 2024

Pingyuan Laboratory, Xinxiang, Henan, 453007, China.

RNA is an intermediary between DNA and protein, a catalyzer of biochemical reactions, and a regulator of genes and transcripts. RNA structures are essential for complicated functions. Recent years have witnessed rapid advancements in RNA secondary structure probing techniques.

View Article and Find Full Text PDF

Transcriptomic analysis reveals potential roles of polyamine and proline metabolism in waterlogged peach roots inoculated with Funneliformis mosseae and Serendipita indica.

Tree Physiol

January 2025

Hubei Key Laboratory of Spices & Horticultural Plant Germplasm Innovation & Utilization, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, China.

Root-associated endophytic fungi can create symbiotic relationships with trees to enhance stress tolerance, but the underlying mechanisms, especially with regard to waterlogging tolerance, remain unclear. This study aimed to elucidate the effects of Funneliformis mosseae and Serendipita indica on the growth, root cross-section structure, and root transcriptional responses of peach under waterlogging stress, with a focus on polyamine and proline metabolism. Genes and transcription factors associated with secondary cell wall biosynthesis were selected, and their expression profiles were analyzed.

View Article and Find Full Text PDF

G-quadruplex structures in 16S rRNA regions correlate with thermal adaptation in prokaryotes.

Nucleic Acids Res

January 2025

Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, United States.

G-quadruplex (G4) structure is a nucleic acid secondary structure formed by guanine-rich sequences, playing essential roles in various biological processes such as gene regulation and environmental stress adaptation. Although prokaryotes growing at high temperatures have higher GC contents, the pattern of G4 structure associated with GC content variation in thermal adaptation remains elusive. This study analyzed 681 bacterial genomes to explore the role of G4 structures in thermal adaptation.

View Article and Find Full Text PDF

RNA G-quadruplexes (rG4s) are non-canonical secondary nucleic acid structures found in the transcriptome. They play crucial roles in gene regulation by interacting with G4-binding proteins (G4BPs) in cells. rG4-G4BP complexes have been associated with human diseases, making them important targets for drug development.

View Article and Find Full Text PDF

How the interplay of biotic and abiotic factors shapes current genetic diversity at the community level remains an open question, particularly in the deep sea. Comparative phylogeography of multiple species can reveal the influence of past climatic events, geographic barriers, and species life history traits on spatial patterns of genetic structure across lineages. To shed light on the factors that shape community-level genetic variation and to improve our understanding of deep-sea biogeographic patterns, we conducted a comparative population genomics study on seven hydrothermal vent species co-distributed in the Back-Arc Basins (BABs) of the Southwest Pacific region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!