Stochastic geometry and electronic architecture of dendritic arborization of brain stem motoneuron.

Eur J Neurosci

Unité de Neurocybernétique Cellulaire, CNRS UPR 418, Marseille, France.

Published: November 1993

We describe how the stochastic geometry of dendritic arborization of a single identified motoneuron of the rat affects the local details of its electrotonic structure. After describing the 3D dendritic geometry at high spatial resolution, we simulate the distribution of voltage gradients along dendritic branches under steady-state and transient conditions. We show that local variations in diameters along branches and asymmetric branchings determine the non-monotonous features of the heterogeneous electrotonic structure. This is defined by the voltage decay expressed as a function of the somatofugal paths in physical distances (voltage gradient). The fan-shaped electrotonic structure demonstrates differences between branches which are preserved when simulations are computed from different values of specific membrane resistivity although the absolute value of their voltages is changed. At given distances from soma and over long paths, some branches display similar voltages resulting in their grouping which is also preserved when specific membrane resistivity is changed. However, the mutual relation between branches inside the group is respecified when different values of specific membrane resistivity are used in the simulations. We find that there are some invariant features of the electrotonic structure which are related to the geometry and not to the electrical parameters, while other features are changed by altering the electrical parameters. Under transient conditions, the somatofugal invasion of the dendritic tree by a somatic action potential shifts membrane potentials (above 10 mV) of dendritic paths for unequal distances from the soma during several milliseconds. Electrotonic reconfigurations and membrane shifts might be a mechanism for postsynaptic plasticity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.1993.tb00216.xDOI Listing

Publication Analysis

Top Keywords

electrotonic structure
16
specific membrane
12
membrane resistivity
12
stochastic geometry
8
dendritic arborization
8
transient conditions
8
values specific
8
distances soma
8
electrical parameters
8
dendritic
6

Similar Publications

Vibrational Fermi Resonance in Atomically Thin Black Phosphorus.

Nano Lett

October 2024

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Article Synopsis
  • Fermi resonance is a phenomenon where two similar vibrational or electronic states mix, and this study explores this in atomically thin black phosphorus, a material that hasn't been thoroughly investigated in this context.
  • The study reveals that the Fermi resonance occurs through the mixing of a fundamental Raman mode and a related infrared mode, resulting in a characteristic doublet that changes with applied strain.
  • The findings provide new insights into how electrons interact with vibrations (or phonons) in black phosphorus and suggest a new way to control Fermi resonances in two-dimensional semiconductor materials.
View Article and Find Full Text PDF

Hypertrophic cardiomyopathy (HCM) is an inherited heart muscle disease that is characterised by left ventricular wall thickening, cardiomyocyte disarray and fibrosis, and is associated with arrhythmias, heart failure and sudden death. However, it is unclear to what extent the electrophysiological disturbances that lead to sudden death occur secondary to structural changes in the myocardium or as a result of HCM cardiomyocyte electrophysiology. In this study, we used an induced pluripotent stem cell model of the R403Q variant in myosin heavy chain 7 (MYH7) to study the electrophysiology of HCM cardiomyocytes in electrically coupled syncytia, revealing significant conduction slowing and increased spatial dispersion of repolarisation - both well-established substrates for arrhythmia.

View Article and Find Full Text PDF

In Japan, the excessive length of time required for nursing records has become a social problem. A shift to concise "bulleted" records is needed to apply speech recognition and to work with foreign caregivers. Therefore, using 96,000 descriptively described anonymized nursing records, we identified typical situations for each information source and attempted to convert them to "bulleted" records using ChatGPT-3.

View Article and Find Full Text PDF

Composite population of myofibroblasts (MFs) within myocardial tissue is known to alter impulse propagation, leading to arrhythmias. However, it remains unclear whether and how MFs alter their propagation patterns when contacting cardiomyocytes (CMs) without complex structural insertions in the myocardium. We attempted to unveil the effects of the one-sided, heterocellular CM-MF connection on the impulse propagation of CM monolayers without the spatial insertion of MFs as an electrical or mechanical obstacle.

View Article and Find Full Text PDF

In a recent study, visual signals were recorded for the first time in starburst amacrine cells of the macaque retina, and, as for mouse and rabbit, a directional bias observed in calcium signals was recorded from near the dendritic tips. Stimulus motion from the soma toward the tip generated a larger calcium signal than motion from the tip toward the soma. Two mechanisms affecting the spatiotemporal summation of excitatory postsynaptic currents have been proposed to contribute to directional signaling at the dendritic tips of starbursts: (1) a "morphological" mechanism in which electrotonic propagation of excitatory synaptic currents along a dendrite sums bipolar cell inputs at the dendritic tip preferentially for stimulus motion in the centrifugal direction; (2) a "space-time" mechanism that relies on differences in the time-courses of proximal and distal bipolar cell inputs to favor centrifugal stimulus motion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!