Neutrophils, recruited to tissue sites of inflammation, release a variety of oxidants and enzymes, which are responsible for tissue damage. Among the oxidants released are potent chlorinated compounds, such as hypochlorous acid and chloramines, which induce tissue cell damage and inactivate protease inhibitors, particularly alpha 1-antitrypsin, the specific inhibitor of neutrophil elastase. In studying a rational approach to the pharmacological control of neutrophil-mediated tissue injury, we investigated the activity of the anti-inflammatory drug nimesulide. This agent reduced the function of the myeloperoxidase pathway (which generates hypochlorous acid), by exerting a cell-directed inhibitory activity, as shown by measurement of superoxide anion and hydrogen peroxide production. Nimesulide also inactivated hypochlorous acid directly and protected alpha 1-antitrypsin from the neutrophil-mediated oxidation. Thus, neutrophil elastolytic activity may be attenuated by nimesulide-spared alpha 1-antitrypsin. The prevention of oxidative inactivation of alpha 1-antitrypsin by nimesulide strictly correlates with the drug's ability to suppress the extracellular availability of hypochlorous acid. Taken together, these data suggest that nimesulide may prevent tissue injury at sites of inflammation by maintaining natural host protective systems.

Download full-text PDF

Source
http://dx.doi.org/10.2165/00003495-199300461-00007DOI Listing

Publication Analysis

Top Keywords

hypochlorous acid
16
alpha 1-antitrypsin
16
myeloperoxidase pathway
8
sites inflammation
8
tissue injury
8
nimesulide
5
tissue
5
nimesulide downregulator
4
activity
4
downregulator activity
4

Similar Publications

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus are primarily transmitted through droplets or aerosols from patients. The inactivation effects of existing virus control techniques may vary depending on the environmental factors. Therefore, it is important to establish a suitable evaluation system for assessing virus control techniques against airborne viruses for further real-world implementation.

View Article and Find Full Text PDF

A mitochondria-targeted NIR fluorescence/photoacoustic dual-modality probe for highly sensitive and selective imaging of HClO in vivo.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University, The First People's Hospital of Nanning, Nanning 530022, Guangxi, PR China. Electronic address:

Article Synopsis
  • Hypochlorous acid (HClO) is a reactive oxygen species produced in mitochondria, and its high levels are associated with various diseases, making its detection crucial in medicine.
  • A new dual-modality probe called MB-ClO has been developed, which uses near-infrared fluorescence (NIRF) and photoacoustic (PA) imaging techniques to accurately and sensitively detect HClO in biological systems.
  • MB-ClO shows low toxicity and good water solubility, has a fast response time, and has been successfully tested in a mouse model of rheumatoid arthritis, highlighting its potential for biomedical applications.
View Article and Find Full Text PDF

The reversal of phototaxis has been observed in a wide range of animal species. However, environmental chemicals that can cause a quick reversal of phototaxis have rarely been reported. Here we identified hypochlorous acid (HClO) as an inducer of phototactic reversal in , also known as sea fireflies.

View Article and Find Full Text PDF

Hypochlorous acid(HClO)/hypochlorite ion (ClO-) is a highly reactive oxygen species (ROS) that play a crucial role in various biological processes. In this paper, a "turn-on" phosphorescent probe (Ir-TPP) for detecting ClO- in mitochondria was designed and synthesized. In solution, Ir-TPP is minimal emission due to rapid isomerization of C=N-OH as an efficient non-radiative decay process.

View Article and Find Full Text PDF

This study aimed to evaluate the histological success of pulpotomy in primary molars using white mineral trioxide aggregate (WMTA) mixed with 2.25% sodium hypochlorite (NaOCl) gel and to evaluate in vitro its physical and chemical properties. The study had a clinical stage and an in-vitro stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!