Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer.

Proc Natl Acad Sci U S A

Department of Immunology, Cleveland Clinic, OH 44195.

Published: November 1993

Nitric oxide (NO) is synthesized within the immune, vascular, and nervous systems, where it acts as a wide-ranging mediator of mammalian physiology. The NO synthases (EC 1.14.13.39) isolated from neurons or endothelium are calmodulin dependent. Calmodulin binds reversibly to neuronal NO synthase in response to elevated Ca2+, triggering its NO production by an unknown mechanism. Here we show that calmodulin binding allows NADPH-derived electrons to pass onto the heme group of neuronal NO synthase. Calmodulin-triggered electron transfer to heme was independent of substrate binding, caused rapid enzymatic oxidation of NADPH in the presence of O2, and was required for NO synthesis. An NO synthase isolated from cytokine-induced macrophages that contains tightly bound calmodulin catalyzed spontaneous electron transfer to its heme, consistent with bound calmodulin also enabling electron transfer within this isoform. Together, these results provide a basis for how calmodulin may regulate NO synthesis. The ability of calmodulin to trigger electron transfer within an enzyme is unexpected and represents an additional function for calcium-binding proteins in biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC47859PMC
http://dx.doi.org/10.1073/pnas.90.22.10769DOI Listing

Publication Analysis

Top Keywords

electron transfer
20
nitric oxide
8
calmodulin
8
neuronal synthase
8
transfer heme
8
bound calmodulin
8
electron
5
transfer
5
oxide synthases
4
synthases reveal
4

Similar Publications

Transient methods for understanding the properties of strongly oxidizing radicals.

Chem Commun (Camb)

January 2025

Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.

This review discusses the properties of strongly oxidizing radicals in organic and aqueous media and highlights the challenges in obtaining accurate values of their reduction potentials. Transient redox equilibrium methods based on the use of strong photooxidants or initiated by pulse radiolysis are shown to provide versatile approaches for decoupling electron transfer reactions from follow-up reactivity of unstable radical species, resulting in accurate values of reduction potentials of very positive couples, including some solvent radical cations. We also show that correlations of reduction potentials with Hammett ∑+p parameters, as well as gas phase ionization potentials, can be used to estimate the redox properties of unknown couples within a homologous series of compounds.

View Article and Find Full Text PDF

One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.

View Article and Find Full Text PDF

A simple cavity-enhanced laser-based heater for reflective samples.

Rev Sci Instrum

January 2025

Institute for Physical Chemistry, University of Göttingen, 37077 Göttingen, Germany.

Surface science instruments require excellent vacuum to ensure surface cleanliness; they also require control of sample temperature, both to clean the surface of contaminants and to control reaction rates at the surface, for example, for molecular beam epitaxy and studies of heterogeneous catalysis. Standard approaches to sample heating within high vacuum chambers involve passing current through filaments of refractory metals, which then heat the sample by convective, radiative, or electron bombardment induced heat transfer. Such hot filament methods lead to outgassing of molecules from neighboring materials that are inadvertently heated; they also produce electrons and ions that may interfere with other aspects of the surface science experiment.

View Article and Find Full Text PDF

Anthraquinone-2-sulfonate immobilized on granular activated carbon inhibits methane production during the anaerobic digestion of swine wastewater.

Water Sci Technol

January 2025

Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 sur, Ciudad Obregón, Sonora 85000, México E-mail:

Granular activated carbon (GAC) and GAC modified with anthraquinone-2-sulfonate (AQS) were used as conductive materials during the anaerobic digestion of swine wastewater (SW). The electron transfer capacity (ETC) in the GAC-AQS was 2.1-fold higher than the unmodified GAC.

View Article and Find Full Text PDF

Low temperature thermal RAFT depolymerization: the effect of Z-group substituents on molecular weight control and yield.

Chem Sci

January 2025

Laboratory of Polymeric Materials, Department of Materials, ETH Zurich Vladimir Prelog Weg 5 8093 Zurich Switzerland

The labile end-groups inherent to many controlled radical polymerization methodologies, including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization, can trigger the efficient chemical recycling of polymethacrylates yielding high percentages of pristine monomer. Yet, current thermal solution ATRP and RAFT depolymerization strategies require relatively high temperatures ( 120-170 °C) to proceed, with slower depolymerization rates, and moderate yields often reported under milder reaction conditions ( lower temperatures). In this work, we seek to promote the low temperature RAFT depolymerization of polymethacrylates regulating the Z-group substitution of dithiobenzoate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!