The induction of the gene RNR3 was investigated in yeast Saccharomyces cerevisiae using RNR31 lacZ fusion. Gene induction was monitored by measuring beta-galactosidase activity. Various drugs that cause DNA damage effectively induced RNR3 expression; alkylating agents (cisplatin, mitomycin C and N-methyl-N'-nitro-N-nitrosoguanidine), a radical producer (bleomycin), and an intercalator (actinomycin D) induced RNR3. When yeast expressing rat CYP1A1 was exposed to 2-aminofluorene, a concentration-dependent induction of RNR3 was observed. Aflatoxin B1 also induced the expression of RNR3 in the same yeast strain concomitant with inhibition of cell growth. In control yeast, no induction of RNR3 was observed upon exposure to 2-aminofluorene or aflatoxin B1. Exposure to 2-acetylaminofluorene or benzo[a]pyrene did not lead to induction of RNR3 in yeast expressing CYP1A1. These results indicate that DNA damage by chemicals related to carcinogenesis induces RNR3, and that activation of these procarcinogens was required for DNA damage-dependent induction of RNR3.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-2952(95)02071-3DOI Listing

Publication Analysis

Top Keywords

induction rnr3
16
rnr3 yeast
12
rnr3
10
induction gene
8
gene rnr3
8
saccharomyces cerevisiae
8
dna damage
8
induced rnr3
8
yeast expressing
8
rnr3 observed
8

Similar Publications

Cellular pathways that detect DNA damage are useful for identifying genes that suppress DNA damage, which can cause genome instability and cancer predisposition syndromes when mutated. We identified 199 high-confidence and 530 low-confidence DNA damage-suppressing (DDS) genes in Saccharomyces cerevisiae through a whole-genome screen for mutations inducing Hug1 expression, a focused screen for mutations inducing Ddc2 foci, and data from previous screens for mutations causing Rad52 foci accumulation and Rnr3 induction. We also identified 286 high-confidence and 394 low-confidence diverse genome instability-suppressing (DGIS) genes through a whole-genome screen for mutations resulting in increased gross chromosomal rearrangements and data from previous screens for mutations causing increased genome instability as assessed in a diversity of genome instability assays.

View Article and Find Full Text PDF

Sensing chemical-induced DNA damage using CRISPR/Cas9-mediated gene-deletion yeast-reporter strains.

Appl Microbiol Biotechnol

February 2024

Molecular Genetics Laboratory, Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan.

Microorganism-based genotoxicity assessments are vital for evaluating potential chemical-induced DNA damage. In this study, we developed both chromosomally integrated and single-copy plasmid-based reporter assays in budding yeast using a RNR3 promoter-driven luciferase gene. These assays were designed to compare the response to genotoxic chemicals with a pre-established multicopy plasmid-based assay.

View Article and Find Full Text PDF

Mutagens and oxidative agents damage biomolecules, such as DNA; therefore, detecting genotoxic and oxidative chemicals is crucial for maintaining human health. To address this, we have developed several types of yeast-based reporter assays designed to detect DNA damage and oxidative stress. This study aimed to develop a novel yeast-based assay using a codon-optimized stable or unstable NanoLuc luciferase (yNluc and yNluCP) gene linked to a DNA damage- or oxidative stress-responsive promoter, enabling convenient sensing genotoxicity or oxidative stress, respectively.

View Article and Find Full Text PDF

CYP1B1 converts procarcinogens into genotoxins in Saccharomyces cerevisiae.

Mutat Res Genet Toxicol Environ Mutagen

February 2022

SUNY Polytechnic Institute, 257 Fuller Road, Albany, NY 12205, United States. Electronic address:

CYP1B1 activates many chemical carcinogens into potent genotoxins, and allelic variants are risk factors in lung, breast, and prostate cancer. However, few eukaryotic genetic instability endpoints have been directly measured for CYP1B1-activated metabolites. In this study, we expressed human CYP1B1 in yeast strains that measure DNA damage-associated toxicity and frequencies of chromosomal translocations.

View Article and Find Full Text PDF

The cell wall integrity (CWI) signaling pathway is best known for its roles in cell wall biogenesis. However, it is also thought to participate in the response to genotoxic stress. The stress-activated protein kinase Mpk1 (Slt2, is activated by DNA damaging agents through an intracellular mechanism that does not involve the activation of upstream components of the CWI pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!