Abnormal traffic of proteins through the glomerular capillary has an intrinsic renal toxicity possibly linked to the subsequent process of over-reabsorption by proximal tubular cells. We investigated in vitro the effect of different protein concentrations on proximal tubular cell endothelin-1 (ET-1) synthesis. Rabbit proximal tubular RC.SV1 cell line was grown to confluence in serum-free hormonally defined medium. Cells were incubated for 6 and 24 hours with serum-free medium containing bovine serum albumin (BSA, 0.1 to 10 mg/mL). ET-1, a locally released hormone that stimulates cell proliferation and promotes extracellular matrix protein synthesis, was measured in cell supernatant by radioimmunoassay. BSA induced a significant dose-dependent increase in proximal tubular cell ET-1 synthesis. BSA and fatty acid-free BSA stimulated tubular ET-1 synthesis and release to a comparable extent, indicating that the lipid component of the molecule is not involved in the observed phenomenon. Experiments in which tubular cells grown on filters in bicameral systems were incubated with BSA (10 mg/mL) showed that ET-1 release was predominantly basolateral. The stimulatory effect on tubular ET-1 synthesis and release was not specific to albumin but was shared by immunoglobulin (Ig) G and transferrin. Exposure of proximal tubular cells for 6 and 24 hours to both proteins (1 and 10 mg/mL) resulted in a dose-dependent increase in ET-1 synthesis. These data suggest that overexposure of proximal tubular cells to proteins, as it occurs in vivo in proteinuric renal diseases, may promote excessive tubular synthesis of ET-1, which is mostly secreted toward the interstitial compartment.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0272-6386(95)90058-6 | DOI Listing |
J Diabetes Complications
January 2025
Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China. Electronic address:
Aims: We aim to explore the potential of nicotinamide n-methyltransferase (NNMT) as a sensitive marker of renal tubular injury and the possibility of an NNMT inhibitor to combine with sodium-glucose cotransporter 2 (SGLT2) inhibitor to protect proximal tubular epithelium in vivo and in vitro model of Type 2 diabetes mellitus (T2DM), respectively.
Methods: In vivo, immunohistochemical staining, Masson's trichrome staining and Sirius red staining were used to observe the changes of NNMT expression, renal tubular injury and interstitial fibrosis in renal tissue from the db/db mice. Bioinformatic analysis was also conducted to broaden the range of data validation.
J Diabetes Investig
January 2025
Faculty of Medicine, Internal Medicine, Shimane University, Izumo, Shimane, Japan.
Aim/introduction: Senescence is a key driver of age-related kidney dysfunction, including diabetic kidney disease. Oxidative stress activates cellular senescence, induces abnormal glycolysis, and is associated with pyruvate kinase muscle isoform 2 (PKM2) dysfunction; however, the mechanisms linking PK activation to cellular senescence have not been elucidated. We hypothesized that PKM2 activation by TEPP-46 could suppress oxidative stress-induced renal tubular cell injury and cellular senescence.
View Article and Find Full Text PDFFront Med (Lausanne)
January 2025
Department of Internal Medicine, Texas Tech University Health Sciences Centre, Lubbock, TX, United States.
While changes in glomerular function and structure may herald diabetic kidney disease (DKD), many studies have underscored the significance of tubule-interstitial changes in the progression of DKD. Indeed, tubule-interstitial fibrosis may be the most important determinant of progression of DKD as in many forms of chronic glomerulopathies. The mechanisms underlying the effects of tubular changes on glomerular function in DKD have intrigued many investigators, and therefore, the signaling mechanisms underlying the cross-talk between tubular cells and glomerular cells have been the focus of investigation in many recent studies.
View Article and Find Full Text PDFBiol Direct
January 2025
Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.
Introduction: Diabetic nephropathy (DN) is a common diabetes-related complication with unclear underlying pathological mechanisms. Although recent studies have linked glycolysis to various pathological states, its role in DN remains largely underexplored.
Methods: In this study, the expression patterns of glycolysis-related genes (GRGs) were first analyzed using the GSE30122, GSE30528, and GSE96804 datasets, followed by an evaluation of the immune landscape in DN.
J Transl Med
January 2025
Department of Endocrine Medicine, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201306, Chin, China.
Background And Objective: Mitochondria are crucial to the function of renal tubular cells, and their dynamic perturbation in many aspects is an important mechanism of diabetic kidney disease (DKD). Single-nucleus RNA sequencing (snRNA-seq) technology is a high-throughput sequencing analysis technique for RNA at the level of a single cell nucleus. Here, our DKD mouse kidney single-cell RNA sequencing conveys a more comprehensive mitochondrial profile, which helps us further understand the therapeutic response of this unique organelle family to drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!