Molecular cDNA cloning, two-dimensional gel immunoblotting, and amino acid microsequencing identified three sequence-unique and distinct proteins that constitute a subfamily of ubiquitously expressed heterogeneous nuclear ribonucleoproteins corresponding to hnRNPs H, H', and F. These proteins share epitopes and sequence identity with two other proteins, isoelectric focusing sample spot numbers 2222 (37.6 kDa; pI 6.5) and 2326 (39.5 kDa; pI 6.6), indicating that the subfamily may contain additional members. The identity between hnRNPs H and H' is 96%, between H and F 78%, and between H' and F 75%, respectively. The three proteins contain three repeats, which we denote quasi-RRMs (qRRMs) since they have a remote similarity to the RNA recognition motif (RRM). The three qRRMs of hnRNP H, with a few additional NH2-terminal amino acids, were constructed by polymerase chain reaction amplification and used for ribohomopolymer binding studies. Each qRRM repeat bound poly(rG), while only the NH2-terminal qRRM bound poly(rC) and poly(rU). None of the repeats bound detectable amounts of poly(rA). The expression levels of hnRNPs H and F were differentially regulated in pairs of normal and transformed fibroblasts and keratinocytes. In normal human keratinocytes, the expression level of H was unaffected by treatment with several substances tested including two second messengers and seven cytokines. Likewise the expression level of F was independent of these substances, although it was strikingly down-regulated by long term treatment with 4 beta-phorbol 12-myristate 13-acetate, indicating that the protein kinase C signaling pathway regulates its expression. No effect of 4 beta-phorbol 12-myristate 13-acetate was observed on the expression of hnRNP H. The genes coding for hnRNPs H, H', and F were chromosome-mapped to 5q35.3 (HNRPH1), 6q25.3-q26, and/or Xq22 (HNRPH2) and 10q11.21-q11.22 (HNRPF), respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.270.48.28780 | DOI Listing |
Clin Nucl Med
January 2025
From the Nuclear Medicine Unit, Department of Diagnostic and Interventional Radiology, Queen Elizabeth Hospital, Hong Kong.
A 77-year-old woman was diagnosed with primary hyperparathyroidism, and initial cervical ultrasonography found no parathyroid lesion, and she was referred to the nuclear medicine unit for dual-phase 99mTc-sestamibi (MIBI) scan. The scintigraphy unveiled heterogeneous uptake patterns across bilateral thyroid lobes, corresponding to the thyroid nodules, alongside a marked focal uptake with delayed tracer washout in the right oral region. The SPECT/CT pinpointed a MIBI-avid nodule within the right parapharyngeal space, indicative of parathyroid ectopia.
View Article and Find Full Text PDFBreast Cancer Res
January 2025
Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.
View Article and Find Full Text PDFNeurobiol Dis
January 2025
Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada. Electronic address:
RNA binding protein dysfunction is a pathogenic feature of multiple neurological diseases, including multiple sclerosis (MS). Neurodegeneration (the loss of, or damage to neurons and axons) is the primary driver of disease progression in MS. Herein, we utilized a novel, neuron-specific model of neurodegeneration by transducing primary mouse neurons with mutant forms of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) identified from MS patients, including one within the M9-nuclear localization sequence of hnRNP A1 (A1(P275S)) and a second in the prion-like domain of hnRNP A1 (A1(F263S)) to test the hypothesis that neuronal hnRNP A1 dysfunction drives neurodegeneration in MS.
View Article and Find Full Text PDFBr J Radiol
January 2025
Division of Nuclear Medicine and Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Theranostics has its roots with the first radioiodine therapy for thyroid diseases in about 80 years ago. More recently the field has experienced a remarkable renascence with the regulatory approval of paired imaging and radiopharmaceutical therapy agents in gastroenteropancreatic neuroendocrine tumors and metastatic castration-resistant prostate cancer that are now employed in routine clinical practice. The momentum is strong for identification and testing of new theranostic agents for use in various cancers and finding new clinical incications of the available agents.
View Article and Find Full Text PDFAcc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!